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SUMMARY 

 In part one we look at a framework for the multi-source data fusion process.  Some of the 

considerations and information that must go into the development of a multi–source data fusion 

algorithm are described.   Features that play a role in expressing users' requirements are also 

described.  We provide a framework for data fusion based on a voting like process that tries to 

adjudicate conflict among the data.  We discuss the idea of a compatibility relationship and 

introduce several important examples of these relationships.  We show that our formulation 

results in some bounding conditions on the fused value implying that the fusion process has the 

nature of a mean type aggregation.  Situations in which the sources have different credibility 

weights are considered.  We present a concept of reasonableness as a means for including in the 

fusion process any information available other then that provided by the sources.  We consider the 

situation when we allow our fused values to be granular objects such as linguistic terms or 

subsets. 

 In part two we consider web based question-answering systems.  We point out that 

question-answering systems differ from other information seeking applications, such as search 

engines, by having a deduction capability or an ability to answer questions by a synthesis of 

information residing in different parts of its knowledge base.  This capability requires appropriate 

representation of various types of human knowledge, rules for locally manipulating this 

knowledge and a framework for providing a global plan for appropriately mobilizing the 

information in the knowledge base to address the question posed.  We suggest some tools to 

provide these capabilities.  We describe how the fuzzy set based theory of approximate reasoning 

can aid in the process of representing knowledge.  We discuss how protoforms can be used to aid 

in deduction and the local manipulation of knowledge.  The idea of a knowledge tree is introduced 

to provide a global framework for mobilizing the knowledge base in response to a query.  We 

look at some types of commonsense and default knowledge.  This requires us to address the 

complexity of the non–monotonicity that these types of knowledge often display.  We also briefly 

discuss the role that Dempster-Shafer structures can play in representing knowledge. 

 Considerable concern has arisen regarding the quality of intelligence analysis.  This has 
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been in large part motivated by the task, prior to the Iraq war, of determining whether Iraq had 

weapons mass destruction.  One problem that made this analysis difficult was the uncertainty in 

much of the information available to the intelligence analysts.  In part three we introduce some 

tools that can be of use to intelligence analysts for representing and processing uncertain 

information.  We make considerable use of technologies based on fuzzy sets and related 

disciplines such as approximate reasoning. 
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PART I:  A Framework for Multi-Source Data Fusion 

1. Introduction 
 With the rapid growth of the Internet and other electronic sources of information capture, 

the problem of the coherent merging of information from multiple sources has become an 

important issue.  This problem has many manifestation ranging from data mining to information 

retrieval to multi-sensor fusion [1-4].   Here we consider one type of problem from this class.  We 

shall consider the situation in which we have some attribute variable, whose value we are 

interested in supplying to a user.  In our situation we have multiple sources providing data values 

for this variable as input to our system.  We call this a data fusion problem.  Even this limited 

example of multi-source information fusion is a very expansive problem.  Here we shall restrict 

ourselves to the discussion of some issues related to this problem. 

 

2. Some Considerations in Data Fusion 

  The process of data fusion is initiated by a request for information about an attribute 

variable to our sources of information.  Let V be a attribute variable whose value lies in the set X, 

called the inverse of V.  We assume a collection S1, S2, ..., Sq of information sources.   Each 

source provides a value which we call our data.  The problem here becomes the fusion of these 

pieces of data to obtain a fused value appropriate for the user's requirements.  The approaches and 

methodologies available for solving this problem depend upon various considerations some of 

which we shall outline in the following.  In figure 1 we provide a schematic framework of this 

multi-source data fusion problem which we use as a basis for our discussion. 

 Our fusion engine combines the data provided by the information sources using various 

types of knowledge it has available to it.  We emphasize that the fusion process involves use of 

both the data provided by the sources as well as other knowledge.  This other knowledge includes 

both context knowledge and user requirements. 
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Figure 1 Schematic of Data Fusion 

 Let us begin to look at some of the considerations that effect the mechanism that is used 

by the fusion engine.  One important consideration in the implementation of the fusion process is 

related to the form, with respect to its certainty, in which the source provides its information.  

Consider the problem of trying to determine the age of John.  The most certain situation is when a 

source reports a value that is a member of X, John's age is 23.  Alternatively the reported value 

can include some uncertainty.  It could be a linguistic value such as John is "young."  It could 

involve a probabilistic expression of the knowledge.  Other forms of uncertainty can be associated 

with the information provided.  We note the fuzzy measure [5, 6] and the Dempster-Shafer belief 

functions [7, 8] provide two general frameworks for representing uncertainty information.  In the 

following unless otherwise specified, we shall assume the information provided by a source is a 

specific value in the space X. 

 Another consideration is the inclusion of source credibility information in the process.  

Source credibility is a user generated or sanctioned knowledge base.  It associates with the data 

provided by the source a weight indicating its credibility.  This credibility weight must be drawn 

from a scale that can be either ordinal or numeric.  That is, there must be some ordering of the 

credibility values.  The process of assigning the credibility to the data reported by a source can 

involve various degrees of sophistication.  For example, degrees of credibility can be assigned 

globally to each of the sources.  Alternatively, source credibility can be dependent upon the type 

of variables involved.  For example, one source may be very reliable with information about ages 

while not very good about information about a person's income.  Even more sophisticated 
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distinctions can be made, for example, a source could be good about information on high income 

people but bad about low income people. 

 As we noted the information about credibility must be at least ordered.  It may or may not 

be expressed using a well defined bounded scale.  For example, the credibility information may be 

expressed by ordering of the sources themselves.  Alternatively the credibility of a source may be 

expressed in terms of the assignment of a value drawn from a well defined scale having an upper 

and lower element.  Generally in the case when the credibility is selected from such a scale the 

assignment of the upper value to a source indicates that the data should be given full weight.  An 

assignment of the lowest value generally means don't use the value, this implies the value should 

have no or little influence in the fusion process.  In some ways the association of a less then 

complete credibility with a source is closely related to a kind of uncertainty assigned to the value 

provided by the source. 

 There exists an interesting special situation, with respect to credibility; where some 

sources may be considered as disinformative or misleading.  Here the lowest value on the 

credibility scale can be used to correspond to some idea of taking the "opposite" of the value 

provided by the source rather than assuming the data provided is of no value.  This is somewhat 

akin to the relationship between false and complementation in logic.  

 Central to the problem of data fusion is the issue of conflict and its resolution.  The 

proximity knowledge base and the reasonableness knowledge base play important roles in the 

handling of this issue. 

 One obvious form of conflict arises when we have multiple readings of a variable that may 

not be the same or even compatible.  For example, one source may say Osema Bin Laden is 35 

years old, another may say he is 45 and another may say he is 55.  We shall refer to this as data 

conflict.  As we shall subsequently see, the proximity knowledge base plays an important role in 

issues related to the adjudication of this kind of conflict. 

 There exists another kind of conflict, one can incur even when we only have a single 

reading for a variable.  This can occur when a reported reading conflicts with what we know to be 

the case, what is reasonable.  Assume when searching for the age of Osema Bin Laden one of the 

sources report that he is eighty years old.  This conflicts with what we know to be reasonable.  
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This is information that we consider to have a higher priority then any information provided by 

any of the sources.  In this case our action is clear: we discount this observation.  We shall call 

this a context conflict, it relates to a conflict with information available to the fusion process 

external to the data provided by the sources.  The repository of this higher priority information is 

what we have indicated as the knowledge of reasonableness in figure1.  This type of a priori 

context or domain knowledge can take many forms and can be represented in different ways. 

 As an illustration of one method of handling this type of domain knowledge is where we 

assume our knowledge base is in the form of a mapping over the domain of V.  More specifically 

a mapping R:X → T called the reasonableness mapping.  We allow this to capture the 

information we have, external to the data, about the possibilities of the different values in X being 

the actual value of V.  Thus for any x ∈ X, R(x) indicates the degree of reasonableness of x.  

Typically, T is the unit interval I = [0, 1].  In this case R(x) = 1 indicates that x is a completely 

reasonable value while R(x) = 0 means x is completely unreasonable.  More generally T can be an 

ordered set T = {t1, …., tn} which has a largest and smallest element, 0 and 1.  R can be viewed 

as a fuzzy subset of reasonable values. 

 The reasonableness mapping R provides for the inclusion of information about the context 

in which we are performing the fusion process.  Any data provided by a source should be 

acceptable given our external knowledge about the situation.  The use of the reasonableness type 

of relationship clearly provides a very useful vehicle for including intelligence in the process. 

 In the data fusion process, this knowledge of reasonableness often interacts with the 

source credibility in an operation which we shall call reasonableness qualification.  A typical 

application of this is described in the following.  Assume we have a source that provides a data 

value ai and has credibility ti.  Here we use the mapping R to inject the reasonableness, R(ai), 

associated with the value ai and then use it to modify ti to give us zi, the support for data value ai 

that came from source Si.  The process of obtaining zi from ti and R(ai) is denoted zi = g(ti, 

R(ai)), and is called reasonableness qualification.  In the following we shall suppress the indices 

and denote this operator as z = g(t, r) where r = R(a).  For simplicity we shall assume t and r are 

from the same scale. 

  Let us indicate some of the properties that should be associated with this operation.  A 
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first property universally required of this operation is monotonicity, g(t, r) ≥ f(t, r) if t ≥ t and r ≥ r.  

A second property that is required is that if either t or r is zero, the lowest value on the scale, then 

g(t, r) = 0.  Thus if we have no confidence in the source or the value it provides is not reasonable, 

then the support is zero.  Another property that can be associated with this operation is symmetry, 

g(t, r) = g(r, t).  Although we may or may not necessarily require this of all manifestations of the 

operation. 

 The essential semantic interpretation of this operation is one of saying that in order to 

support a value we desire it to be reasonable and emanating from a source in which we have 

confidence.  This essentially indicates this operation is an "anding" of the two requirements.  

Under this situation a natural condition to impose is g(t, r) ≤ Min[t, r]. 

 Relationships conveying information about the congeniality1 between values in the 

universe X in the context of their being the value of V play an important role in the development 

of data fusion systems.  Generally, these types of relationships convey information about the 

compatibility and interchangeability between elements in X and as such are fundamental to the 

resolution and adjudication of internal conflict.  Without these relationships conflict can't be 

resolved.  In many applications underlying congeniality relationships are implicitly assumed.   A 

common example is the use of least squared based methods.  The use of linguistic concepts and 

other granulation techniques are based on these relationships [9, 10].  Clustering operations 

require these relationships.  These relationships are related to equivalence relationships and 

metrics.  Central to these relationships are the properties of reflexivity (a value is congenial to its 

self) and symmetry. 

 For our purposes we shall find the concept of a proximity relationship [11] useful in 

discussing data fusion.  Formally, a proximity relationship on a space X is a mapping 

Prox:X × X → T  having the properties: (1). Prox(x, x) = 1 (reflexive) and (2). Prox(y, x) = 

Prox(y, y) (symmetric).  Here T is ordered space having largest and smallest elements denoted 1 

and 0.  Often T is the unit interval.  Intuitively the value Prox(x, y) is some measure of degree to 

                                            
1We use this term to indicate relationships like proximity, similarity, equivalence or distance. 
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which the values x and y are compatible and non-conflicting with respect to context in which the 

user is seeking the value of V.  The concept of metric or distance is related in an inverse way to 

the concept of proximity. 

 A closely related and stronger idea is the concept of similarity relationship as introduced 

by Zadeh [12, 13].  Formally, a similarity relationship on a space X is a mapping Sim:X × X → T 

having the properties 

 1) Sim(x, x) = 1  reflexive 

 2) Sim(x, y) = Sim(y, x) symmetric 

 3) Sim(x, z) ≥ Sim(x, y) ∧ Sim(y, z)  transitive 

A similarity relationship adds the additional requirement of transitivity.  Similarity relationships 

provide a generalization of the concept of equivalent relationships.   

 A fundamental distinction between proximity and similarity relationships is the following.  

In a proximity relationship x and y can be related and y and z can be related without having x and 

z being related.  In a similarity relationship under the stated premise a relationship must also exist 

between x and z 

 In situations in which V has its value taken from a numeric scale then the bases of the 

proximity relationship is the difference |x - y|.  However the mapping of |x - y| into Prox(x, y) may 

be highly non-linear.  

 For attributes assuming non-numeric values a relationship of proximity is based on 

relevant features associated with the elements in the variables universe.  Here we can envision a 

variable having multiple appropriate proximity relationships.  As an example let V be the country 

in which John was born, its domain X is the collection of all the countries of the world.  Let us see 

what types of proximity relationship can be introduced on X in this context.  One can consider the 

continent in which a country lies as the basis of a proximity relationship, this would actually 

generate an equivalence relationship.  More generally, the physical distance between countries 

can be the basis of a proximity relationship.  The spelling of the country's name can be the basis 

of a proximity relationship.  The primary language spoken in a country can be the basis of a 

proximity relationship.  We can even envision notable topographic or geographic features as the 

basis of proximity relationships.  Thus, many different proximity relationships may occur.  The 
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important point here is that the association of a proximity relationship over the domain over a 

variable can be seen as a very creative activity.  More importantly, the choice of proximity 

relationship can play a significant role in the resolution of conflicting information. 

 A primary consideration that effects the process used by the fusion engine is what we shall 

call the compositional or matrimonial nature of the values of the variable V.  This characteristic 

plays an important role in the types of operations that are available to use during the fusion 

process.  It determines what types of aggregations we can perform.  This concept is closely related 

to the idea of scale and measurement, a topic studied extensively in the field of mathematical 

psychology.  For our purposes we shall distinguish between three types of variables with respect 

to this characteristic.  The first type of variable is what we shall call celibate.  The word nominal 

can be used here.  These are variables for which the composition of multiple values is 

meaningless.  An example of this type of variable is a person's name.  Here the process of 

combining this is completely inappropriate.  More formally these are variables whose universe 

has no mathematical structure.  These variables only allow comparison as to whether they are 

equal. 

 A more structured type of variable is an ordinal variable.  For these types of variables 

these exists some kind of meaningful ordering of the members of the universe.  An example of 

this is a variable corresponding to size that has as its universe {small, medium, large}.  For these 

variables some kind of compositional process is allowable, combining small and large to obtain 

medium is meaningful.  Here composition operations must be based on ordering. 

 The most structured type of variable is a numeric variable.  For these variables in addition 

to ordering we have the availability of all the arithmetic operators.  This of course allows us a 

great degree of freedom and a large body of compositional operators. 

 

 

3. Characterizing User Requirements 

 The output of any fusion process must be guided by the needs, requirements and desires of 

the user.  In the following we shall describe some considerations and features that can be used to 
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define or express the requirements of the user. 

 An important consideration in the presentation of output is the users level of conflict 

tolerance.  Conflict tolerance is related to the multiplicity of possible values presented to the user.  

Does the user desire one unique value or is it appropriate to provide him with a few solutions or is 

the presentation of all the multi source data appropriate? 

 Another closely related issue relates to the level of granulation.  As described by Zadeh 

[14] a granule is a collection of values drawn together by proximity of various types.  Linguistic 

terms such as cold and old are granules corresponding to a collection of values whose proximity is 

based on the underlying variable.  In providing information we must satisfy the user's level of 

granularity for the task at hand.  Here we are not referring to the number of solutions provided but 

the nature of each solution object.  One situation is that in which each solution presented to the 

user must be any element from the domain X.  Another possibility is one in which we can 

provide, as a single solution, a subset of closely related values.  Presenting ranges of values is an 

example of this.  Another situation is where use a vocabulary of linguistic terms to express 

solutions.  An example is where using a term such as "cold" as the value for the temperature 

would be acceptable. 

 Another issue related to the form of the output is whether all output values presented to the 

user are required to be values that appear in the input or can we blend output values using 

techniques such as averaging to construct new values that didn't appear in the input.  A closely 

related issue is the reasonableness of the output..  For example, consider the attempt to determine 

the number of children that John has.  Assume one source says 8 and another says 7, taking the 

average gives us 7.5.  Well, clearly it is impossible for our John to have 7.5 children.  In addition, 

we should note that sometimes the requirement for reasonableness may be different for the output 

then input. 

 Another feature of the output revolves around the issue of qualification.  Does the user 

desire qualifications associated with suggested values or does he prefer no qualification?  As we 

discussed earlier input values to a fusion system often have attached values of credibility, this 

being due to the credibility of the source and the reasonableness of the data provided.  

Considerations related to the presentation of this credibility arise regarding the requirements of 
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the user.  Are we to present weights of credibility with the output or present it without these 

weights ?  In many techniques, such as weighted averaging, the credibility weight gets subsumed 

in the fusion process. 

 In most cases the fusion process should be deterministic, a given informational situation 

should always result in the same fused value.  In some cases we may allow for a non-

deterministic, random mechanism in the fusion process.  For example in situations in which some 

adversary may have some role in effecting the information used in the fusion process we may 

want to use randomization to blur and confuse the influence of their information. 

 

4. Basic Conceptual Framework for Data Fusion 

 Here we shall provide a basic framework in which to view and implement the data fusion 

process.  We shall see that this framework imposes a number of properties that should be satisfied 

by a rational data fusion technology. 

 Consider a variable V having an underlying universe X.  Consider the situation in which 

we have a collection of q assessments of the variable, inputs to our fusion engine.  Each 

assessment is information supplied by one of our sources.  Let ai be the value provided by the ith 

source.  Our desire here is to fuse these values to obtain some value a ∈ X as the fused value.  We 

denote this as a = Agg(a1, ..., an).  The issue then becomes that of obtaining the operator Agg that 

fuses these pieces of data.  One obvious requirement of such an aggregation operator is 

idempotency, if all ai = a then a = a. 

 In order to obtain acceptable forms for Agg we must conceptually look at the fusion 

process.  At a meta level multi-source data fusion is a process in which the individual sources 

must agree on a solution that is acceptable to each of them, that is compatible with the data they 

each have provided. 

 Let a be a proposed solution, some element from X.  Each source can be seen as "voting" 

whether to accept this solution.  Let us denote Supi(a) as the support for solution a from source i.  

We then need some process of combining the support for a from each of the sources.  We let 

Sup(a) = F(Sup1(a), Sup2(a), ..., Supq(a)) 
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be the total support for a.  Thus F is some function that combines the support from each of the 

sources.  The aggregated value a is then obtained as the value a ∈ X that maximizes Sup(a).  Thus 

a is such that Sup(a) = Maxa∈X[Sup(a)]. 

 One natural property associated with F is that the more support from the individual 

sources the more overall support for a.  Formally if a and b are two values and if Supi(a) ≥ 

Supi(b) for all i then Sup(a) ≥ Sup(b).  This requires that F be a monotonic function, F(x1, x2, 

........, xq) ≥ F(y1, y2, ........, yq) if xi ≥ yi for all i.   A slightly stronger requirement is strict 

monotonicity.  This requires that F be such that if xi ≥ yi for all i and there exists at least one i 

such that xi > yi then F(xi, ..., xq) > F(y1, ..., yq). 

 Another condition we can associate with F is a symmetry with respect to the arguments.  

That is, the indexing of the arguments should not affect the answer.  This symmetry implies a 

more expansive situation with respect to monotonicity.  Assume t1, ..., tq and t1, ..., tq are two sets 

of arguments of F, Supi(a) = ti and Supi(a) = t1.  Let perm indicate a permutation of the 

arguments, where perm(i) is the index of the ith element under the permutation.   Then if there 

exists some permutation such that ti ≥ tperm(i) for all i we get  

   F(t1, ..., tq) ≥ F(t1, ..., tq). 

 Let us look further into this framework.  A source's support for a solution, Supi(a) depends 

upon the degree of compatibility between the proposed solution a and the value provided  by the 

source, ai.  Let us denote Comp(a,  ai) as this compatibility.  Thus Supi(a) is some function of the 

compatibility between ai and a.  Furthermore, we have a monotonic type of relationship.  For any 

two values a and b if Comp(a,  ai) ≥ Comp(b,  ai) then Supi(a) ≥ Supi(b). 

 The compatibility between two objects in X is based upon some underlying proximity 

relationship.  The concept of a proximity relationship, which we introduced earlier, has been 

studied is the fuzzy set literature [11, 15, 16].  Here then we shall assume a relationship Comp, 

called the compatibility relationship, which has at least the properties of a proximity relationship.  

Thus  Comp: X × X → T in which T is an ordered space with greatest and least elements denoted 

1 and 0 and having the properties:  (1) Comp(x, x) = 1 and (2) Comp(x, y) = Comp(y, x).  A 

suitable, although not necessary, choice for T is the unit interval. 

 We see that this framework imposes an idempotency type condition on the aggregation 



 

 

13 
 
 

process.  Assume ai = a for all i.  In this case Comp(a, ai) = 1 for all i.  From this it follows that 

for any b ∈ X Comp(a, ai) ≤ Comp(b, ai) hence Supi(a) ≥ Supi(b) for all b thus Sup(a) ≥ Sup(b) 

for all a.  Thus there can never be a better solution than a.  Furthermore, if F is assumed strictly 

monotonic and Comp is such that Comp(a, b) ≠ 1 for a ≠ b then we get a strict idempotency. 

 We now introduce the idea of a solution set and the related idea of minimal solution set.  

We say that a subset G of X is a solution set if all a s.t. Sup(a) = Maxa∈X[Sup(a)] are contained 

in G.   We shall say that a subset H of X is a minimal solution set if there always exists one 

element a ∈ Η  s.t. Sup(a) = Maxa∈X[Sup(a)].  Thus a minimal solution set is a set in which we 

can always find an acceptable fused value. 

 

5. Some Common Compatibility Relationships 

 We now look at some very important special examples of compatibility relationships and 

show that in these cases there exists some minimal solution sets which are easily definable in 

terms of the data to be fused.  These minimal solution sets can be seen as boundaries on the subset 

of elements of X in which we look to find a solution.  These boundaries seem to reflect a general 

idea that the aggregation procedure has the nature of a mean (averaging) operator. 

 The first situation we consider is a very strong compatibility requirement.  Here we 

assume Comp(a, b) = 1 if a = b and Comp(a, b) = 0 if a ≠ b.  This is a very special kind of 

equivalence relationship, elements are only equivalent to themselves. 

 Let B be the subset of X containing the input data values, B = {b| s.t. ∃ ai = b}.  Let d be 

some element not in B, d ∈ X - B.  In this case Comp(d, ai) = 0 for ai.  Let b be some element 

from B, b ∈ B.  Here there exists at least one ai s.t. Comp(b, ai) = 1.  Thus we see that 

Comp(b, aj) ≥ Comp(d, aj) for all j and there exists at least one i such that Comp(b, ai) > 

Comp(d, ai).  Hence Supi(b) ≥ Supi(d) for all i and at least one Supi(b) > Supi(d).  From this we 

see that Sup(b) ≥ Sup(d).   Furthermore if F is strictly monotonic then Sup(b) > Sup(d).  Since a is 

the element which has the largest Sup then an implication of this is that the aggregated value 

should be an element from the collection of input values, in particular a ∈ B.  Here B is a minimal 

solution set.   This can be seen as a kind of boundedness condition on the aggregated value, a 
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must be a value in the set B of input values.  This is of course a very natural value.  We note that 

idempotency is also assured here - in the case of idempotency all the elements ai = a and hence 

B = {a}. 

 We next show that if Comp is any equivalence relationship then B still provides a minimal 

solution set-no solution can be better than some element in B.  We recall if Comp is an 

equivalence relationship then for each x ∈ X there exists a subset Ex of X, called the equivalence 

of x, such that Comp(x, y) = 1 for all y ∈ Ex and for any z ∉ Ex we have Comp(x, z) = 0.  Let 

B* =
 x∈B
U  Ex, the union of all equivalence class corresponding to elements in B.  If z ∈ X - B* 

then Comp(z, ai) = 0 for all i.  Since for any b ∈ B* there always exists some ai such that 

Comp(b, ai) = 1 hence Sup(b) ≥ Sup(z).  Thus there never exists an element z ∈ X - B* better than 

any element in B*.  Furthermore if F is strictly monotonic then any element in B* is always better 

than any z ∈ X - B*.  Thus we need never look for a solution in X - B*.  Furthermore we see the 

following.  Let a ∈ B* but a ∉ B, thus a is in the equivalence class of some element in B.  Let a ∈ 

Xb where b ∈ B.  We see that for any ai, Comp(b, ai) = Comp(a, ai) hence Supi(b) = Supi(a).  

Thus there exists no element better than some element in B.  Then B is a minimal solution.  Thus 

we can bound our search for solution by B. 

 We now turn to another type of compatibility relationship - the situation in which there 

exists some linear ordering on the space X that underlies the compatibility relation.  In particular 
we let L be a linear ordering on X.  We shall use the notationx >

L
 y to indicate that x is higher2 in 

the ordering then y.  We now require that our compatibility relation, in addition to being reflexive 

and symmetric, be such that the closer the elements are in the ordering L the more compatible 
they are.  Thus we have that if x >

L
 y >

L
 z then Comp(x, y) ≥ Comp(x, z).  We say this connection 

between ordering and compatibility is strict if x >
L

 y >
L

 z implies Comp(x, y) > Comp(x, z). 

 We now show that in this situation there also exists a boundedness condition.  Let 
a* = Max

L i[ai], a* is the largest element of the input values with respect to the underlying 

ordering >
L

.  Let a* = Min
L i[ai] the smallest element in B with respect to the ordering.  Then we 

                                            
2 At times we shall find it more natural to use the term larger in place of higher. 
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shall see that we can always find a solution a satisfying  
   a* >

L
 a >

L
 a* 

We see this as follows.  Assume b <
L

 a*, b is below a* in the ordering L, then for any input ai we 

have ai >L
 a* >

L
 b hence Comp(ai, a*) ≥ Comp(ai, b).  From this it follows that Sup(a*) ≥ Sup(b).  

Thus a* is at least as good as any smaller b.  Similarly, if d >
L

 a* then for any input data ai we 

have ai >L
 a* >

L
 b therefore for all ai we have Comp(ai, a*) ≥ Comp(a, a).  From this we we get 

that Sup(a*) ≥ Sup(d).  Thus we see the subset of X lying between a* and a*, with respect to the 

ordering L, provides a minimal solution set.  This is the usual boundary condition associated with 

mean aggregation operators.  Thus we are beginning to see that Agg must be a mean-like 

operator.   

 Let us now consider the situation in which our underlying compatibility relationship is a 

similarity relationship [12].  That is, we have the additional property that for all x. y and z  

Comp(x, z) ≥ Maxy [Comp(x, y) ∧ Comp(y, z)]. 

An important feature of any similarity relationship is the following [12].  For every α  ∈ T there 
exists a partitioning of X into classes Ej

α, X = ∪
j

Ej
α and Ei

α ∩ Ej
α = ∅ for i ≠ j, such that for all 

x and y ∈ Ej
α we have Comp(x, y) ≥ α and for all z ∉ Ej

α and x ∈ Ej
α we have Comp(x, z) < α. 

 Let B be our collection of observations B = ∪
i

{ai}.  Let α be the minimal similarity 

between any elements in B, α = Min
ai, aj ∈B

 [Comp(ai, aj)].  Let the collection of subsets Ej
α be the 

α–level partitioning of X.  This exists one member of this partitioning containing B.  Let Ej*
α  be 

the member of the partitioning class containing B.  Here then B ⊆ Ej*
α  and Ej

α
 ∩ B = ∅ for all j ≠ 

j*.  We shall now show that Ej*
α  provides a minimal solution set.  We see this as follows.  If z ∈ 

Ej*
α  then Comp(z, y) ≥ α for all y ∈ Ej*

α .  Since B ⊆ Ej*
α  then Comp(z, ai) ≥ α for all input.  

Assume x ∉ Ej*
α  then Comp(x, y) < α  for all y ∈ Ej*

α .  Since B ⊆ Ej*
α  then Comp(x, ai) < α for all 

i.  From this it follows Supi(z) ≥ Supi(x) and hence Sup(z) ≥ Sup(x).  Thus we see a element not 

in Ej*
α  can't score better then an element in Ej*

α , thus Ej*
α .provides a minimal solution set when our 

Comp relationship is a similarity relationship. 

 Finally we introduce a trivial example of a proximity relationship.  We shall say that a 

proximity relationship has a wild card if there exists an element x ∈ X having the property 
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Prox(x, y) = 1 for all y ∈ X.  In this case x is called a wild card.  Clearly if a proximity 

relationship has a wild card it is always a best fused value, it provides a minimal solution set.  

 

6. Some Features on the Function F 
 We described the process of determining the fused value to a data collection <a1, ..., aq> 

as to be conceptually implemented by the following process: 

  1) For any a ∈ X obtain Supi(a) = Comp(a,  ai) 

  2) Evaluate Sup(a) = F(Supi(a), ..., Supq(a)] 

  3) Select as fused value the a such that Sup(a) = Maxa∈X[Sup(a)] 

 We explicitly made two assumptions about the function F.  The first was that we assumed 

that F is symmetric with respect to the arguments, the indexing of input information is not 

relevant.  The second assumption we made about F was that it is monotonic with respect to the 

argument its values.  An implicit assumption we made about F was an assumption of 

pointwiseness.  Here the determination of the valuation of any solution a, V(a) depends only on a, 

it is independent of any of other possible solutions.  This property imposes the condition of 

indifference to irrelevant alternatives, a requirement that plays a central role in two fundamental 

works on opinion aggregation Arrow's impossibility theorem [17] and Nash's bargaining problem 

[18].  Specifically this condition assures us that the inclusion or removal of possible solutions, 

elements from X doesn't affect the relationship between other solutions.  Essentially this assures 

that if Sup(x) ≥ Sup(y) then this will not change if we add or remove another element z from the 

space X.   

 There exists another property we want to associate with F, it is closely related to the idea 

of self-identity discussed by Yager and Rybalov [19].  Assume that we have a data set 

<a1, …, aq> and using our procedure we find that a is the best solution Sup(a) ≥ Sup(x) for all x 

in X.  Assume now that we are provided an additional piece of data aq+1 for which  aq+1 = a, the 

new data suggests a as its value.  Then clearly a should still be the best solution.  We shall 

formalize this requirement.  In the following we let a and a be two solutions and let ci = Comp(a, 

ai) and ci = Comp(a, ai).  We note that if aq+1 = a then cq+1 = Comp(a, aq+1) ≥ ci  for all i = 1 to 
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q and cq+1 ≥ ci for i = 1 to q + 1.   Using this we can more formally express our additional 

requirement on F.  If  

   F(c1,  ..., cq) ≥ F(ci, ..., cq) 

and if  cq+1 ≥ cj  for j = 1 to q  and cq+1 ≥  cj for j = 1 to q + 1 then we require that  

  F(c1,  ..., cq, cq+1) ≥ F(ci, ..., cq, cq+1). 

 Our work so far assumed a very general formulation for F.  If we consider the situation in 

which the compatibility relation takes its values in the unit interval [0, 1], one formulation for F 

that meets all our required conditions is the sum or totaling function, F(x1, x2, ...xq)  = �
i = 1

q
xi.  

Using this we get Sup(a) = Supi(a)�
i = 1

q
 = �

i = 1

q
Comp(a, ai).  Thus our fused value is the element 

that maximizes the sum of its compatibilities with the input.   

 What becomes clear here is the fused value depends very strongly on the compatibility 

relationship.  Let us consider the special situation in which our variable takes as its value numbers 

and the compatibility between elements is directly related to the distance between the elements.  
Here then Comp(x, y) = 1 - D(x, y)

Dmax
  where Dmax is the largest distance.  Using this compatibility 

relationship we get Sup(a) = Dmax - D(a, ai)
Dmax

�
i = 1

q
.  The fused value, a,  is the value that maximizes 

Sup(a).  Here this is the value a that minimizes D(a, ai)�
i = 1

q
.  If D(a. ai) is taken as the square 

difference, D(a. ai) = (a - ai)2, then it is easy to show that a = 1
q �

i = 1

q
ai, is simply the average.  

Thus we see using the average of the data values is a special case under particular assumptions for 

F and Comp.  We should point out that this assumption about the compatibility relationship may 

not always be the appropriate assumption and hence the use of the average may not always be 

appropriate. 

 

7. On Monotonicity in Ordinal Spaces 

 We again return to the case in which the data is drawn from a set which has an ordering 

that is used to generate the proximity relationship.  In the preceding sections we showed that in 

this case our fused value a must be bounded Mini[ai] ≤ a ≤ Maxi[ai].  Let us now look a condition 
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of monotonicity of aggregated value usually associated with this environment: if aj ≥ aj for all j 

then this monotonicity property requires that Agg(a1, ..., aq) ≥ Agg(a1, ..., aq).  We shall see that 

our formulation doesn't impose this condition.  This is as it should be in a general formulation.  

For this generality allows us to include "mode-like" type fusion methods which are known not to 

be monotonic in the sense described above. 

 Assume the data set has been indexed such that a1 ≤ a2 ≤ ... ≤ aq.  Let its fused value be a.  

Let aj be another collection of q values such that aj = aj for all j ≠ k and having ak > ak.  Thus all 

the elements in aj are equal to those in aj except the kth.  Data value monotonicity requires us to 

show that if Agg(a1, ..., aq) = a then a can not be less than a.  Let us see what is needed to assure 

this requirement. 

 It appears that one feature that leads to difficulty in attaining this type of monotonicity are 

proximity relationships that manifest saturation.  We refer to figure 2 to understand this idea. 

 

x
1 x

2
x

3
x4  

Figure 2.  Illustration of Saturation 

 If Prox(x1, x3) < Prox(x2, x3) and Prox(x1, x4) = Prox(x2, x4) then we have saturation.  

Here x4 has moved so far away from x1 and x2 that their proximity to x4 has become about the 

same.  To illustrate how this saturation effect interferes with the attainment of monotonicity 

consider the following illustration (figure 3a). 

a 1 a 2 a 3

yx

 
Figure 3a.  Effect of Saturation on Monotonicity 

In the above let a1, a2 and a3 be three pieces of data and let x and y be two proposed fused values.  

Assume here that the F and the Prox relationship are such that y is a better solution then x.  This is 

essentially based on the fact that y is closer to the data points a2 and a3.  Now consider figure 3b. 

a 1 a 2 a 3

yx

 
Figure 3b.  Effect of Saturation on Monotonicity 

In figure 3b we have increased the value of a3.  If this increase is of such a nature that it 
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eliminates any distinction between the compatibility of a3 with x or y then comparison of x and y 

as possible fused values is simply based on there relationships with a1 and a2.  Since x is closer to 

a1 then y is to a2 the possibility arises for x to be a better choice for fused value the y.  Thus we 

see that in the face of this saturation, an increase in data value can result in a decrease in fused 

value. 

 Partitioning type equivalence relationships are particular examples of this type of 

saturating proximity relationships.  Let X be an ordered space x1 > x2 > ... > xn.  Assume Prox is 
an equivalence relationship in which Aj are the equivalence classes, X = »

i
Aj.  Let x1 < xk1 < 

xk3.  Assume x1 and xk1 ∈ A1 and xk3 ∈ A3.  Then Prox(x1, xk1) = 1 and Prox(x1, xk3) = 0, 

Prox(xk1, xk3) = 0.  Assume now xk1 increase to xk2 ∈ A2.  Now we Prox(x1, xk2) = 0, 

Prox(xk2, xk3) = 0 and Prox(xk3, xk3) = 0.   

 As we already noted this lack of universally requiring monotonicity with respect to data 

values allows us to include different types of fusion techniques in our framework.  A notable 

example of a non-monotonic type fusion operator is the mode.  Consider the case where we have 

observations 10, 10, 10, 15, 15, 15, 15.  The mode is 15.  Assume a data set 10, 10, 10, 15, 15, 20, 

20.  We have increased two of the fifteens to 20.  Our mode becomes 10. 

 

8. Credibility Weighted Sources 

 In the preceding we have implicitly assumed all the data had the same credibility.  Here 

we shall consider the situation in which each data has a credibility weight wi (our input are q pairs 

of (wi, ai)).  We also note that the weight wi must be drawn from a scale that has at least an 

ordering.  In addition we assume this scale has minimal and maximal elements denoted 0 and 1. 

 Again in this situation for any a ∈ X we calculate Sup(a) = F(Sup1(a), ..., Supq(a)) where 

Supi(a) is the support for a from the data supplied by source i, (wi, ai).  However in this case, 

Supi(a) depends upon two components.  The first being the compatibility of a with ai, Comp(a, ai) 

and the second being the weight or strength of credibility source i.  Thus in this case 

   Supi(a) = g(wi,  Comp(a, ai)) 

Ideally we desire that both wi and Comp(a, ai) be drawn from the same scale, which has at least 
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an ordering.  For the following discussion we shall not implicitly make this assumption.  

However, we shall find it convenient to use 0 and 1 to indicate the least and greatest element on 

each of the scales.  We now specify the properties that are required of the function g.  A first 

property we require of g is monotonicity with respect to both of the arguments:  g(x, y) ≥ g(z, y) if 

x > z and g(x, y) ≥ g(x, w) if y > w.  Secondly we assume that zero credibility or zero 

compatibility results in zero support: g(x, 0) = g(0, y) = 0 for all x and y.  We see that g has the 

character of an "and" type operator.  In particular at a semantic level we see that we are essentially 

saying is: 

"source i provides support for a solution if the source is credible and the solution is compatible 

with the sources data". 

With this we see that g(1, 1) = 1 and g(x, y) ≠ 0 if x ≠ 0 and y ≠ 0.  We must make one further 

observation about this process with respect to source credibility.  Any source that has zero 

credibility should in no way effect the decision process.  Thus if ((w1, a1), ..., (wq, aq)) has as its 

fused value a then the data ((w1, a1), ..., (wq, aq), (wq+1, aq+1)) where wq+1 = 0 should also 

have the same result.  With this understanding we can discard any source with zero credibility.  In 

the following we shall assume unless otherwise stated all sources have non-zero credibility. 

 We now show that the boundary conditions also hold in this case where the sources have  

weights.  First let our situation be one in which our Comp relationship is strict, it  is such that 
Comp(a, b) = 1 if a = b and Comp(a, b) = 0 if a ≠ b.  Again let B = »

i
{ai}, the set of all the 

values provided by the sources.  If a ∉ B then for all i we have Comp(a,  ai) = 0 and from the 

above requirements we get  Supi(a) = 0.  Let b ∈ B then Comp(b, ai) = 1 for all i such that ai = b.  

Hence Comp(b, ai) ≥ Comp(a, ai) for all i and therefore Supi(b) ≥ Supi(a) for all i and hence 

Sup(b) ≥ Sup(a).  Therefore we can always find the fused solution in B. 

 In a similar way we can show that when the proximity relationship is based on an ordering 

and the input data have weights it is the case the fused value must lie between the largest and 

smallest input values.  The justification of this is based on the monotonicity of g with respect to 

the compatibility.  In particular if Mini[ai] = a1 and if a < a1 then Comp(a, aj) ≤ Comp(ai, aj) for 

all j hence g(wj, Comp(a, aj)) ≤ g(wj, Comp(a1, aj) and hence Supj(a) ≤ Supj(a1) for all j.  In a 
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similar way we can shown that if Maxj[ai] = aq and if a > aq then Supj(a) ≤ Supj(aq) for all j. 

 

9. On the Inclusion of Reasonableness 

 In an earlier part we introduced the idea of reasonableness and indicated its importance in 

the data fusion process.  At a meta level we mean to use this idea to introduce any information, 

exclusive of the data provided by the sources, we may have about the value of variable of interest.  

The information we have about reasonableness will affect the fusion process in at least two ways.  

First it will interact with the data provided by the sources.  In particular, the weight (credibility) 

associated with a source providing an unreasonable input value should be diminished and hence 

its importance in the fusion process reduced.  Secondly some mechanism should be included in 

the fusion process to block unreasonable values from being provided as the fused value. 

 A complete discussion of the issues related to the representation and inclusion of 

reasonableness in the data fusion process is complex and beyond our immediate aim as well as 

beyond our complete understanding at this time.  In many ways the issue of reasonableness goes 

to the very heart of intelligence.  We leave a more expansive discussion of this concept to some 

future work.  Here we shall focus on the representation of some very specific type of knowledge 

and its role in introducing a consideration of reasonableness in the fusion process. 

 Information about the reasonableness of values of a variable of interest can be either 

pointed or diffuse.  By pointed we mean information specifically about the object while diffuse 

information is about objects of a class in which our object of interest lies.  Generally, pointed 

information has a possibilistic nature, while diffuse information is probabilistic.  Here we consider 

the situation in which our information about reasonableness is pointed and captured by a fuzzy 

subset, a mapping R: X → T and thus has a possibilistic nature.  Here for any x ∈ X, R(x) 

indicates the reasonableness (or possibility) that x is a solution of variable of interest.  For 

example, if our interest is to obtain a person's age and before soliciting data from external sources 

we know that the person is young then we can capture this information with R and thus constrain 

the values that are reasonable [20, 21].  In the above we assume T is a linear ordering having 

maximal and minimal elements, usually denoted 1 and 0. 
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 Let us see how we can include this information into our data fusion process.  Assume the 

data provided by source i is denoted ai and wi is the credibility assigned to source i.  We shall 

assume these credibilities are measured on the same scale as the reasonableness.  In the fusion 

process the importance weight, ui, assigned to the data ai should be a function of the credibility of 

the source,wi, and the reasonableness of the data, R(ai).  An unreasonable value, whatever the 

credibility of the source, should not be given much consideration in the fusion as is the case for a 

piece of data coming from a source with low credibility whatever the reasonableness of its data.   

Using the Min to implement this "anding" we obtain ui = Min[R(ai), wi] as the importance weight 

assigned to the data ai coming from this source.  In this environment the information that goes to 

the fusion mechanism is the collection <(u1, a1), ..., (uq, aq)>. 

 As in the preceding, the support for a proposed fused value a, should be a function of its 

support from input data: 

Sup(a) = F(Supi(a), ..., Supq(a)) 

The support provided from source i, for solution a, should depend on the importance weight ui 

assigned to data supplied by source i as well as the compatibility of the data ai and the proposed 

fused value, Comp(a, ai).  In addition, we must also include information about the reasonableness 

of the proposed solution a.  For a solution a to get support from source i it should be compatible 

with the data ai and compatible with what we consider to be reasonable, Comp(a, R); we let 

Compi(a) = Comp(a,  ai) ∧ Comp(a, R).  Furthermore, Comp(a,  R) = R(a) and Compi(a) = 

Comp(a, ai) ∧ R(a).  In addition, as we have indicated, the support afforded any solution by 

source i should be determined in part by the importance weight assigned i.  Taking these 

considerations into account, we get Supi(a) = g(ui, Compi(a)).  Substituting our values we get:   

   Supi(a) = g(wi ∧ R(ai), Comp(a, ai) ∧ R(a)) 

What is clear is that g should be monotonically increasing in both its arguments and be such that 

if any of the arguments are 0 then Supi(a) = 0.  In the case in which we interpret g as 

implementing an anding and using the Min operator as our and we get Supi(a) = wi ∧ R(ai) ∧ 

R(a) ∧ Comp(a, ai).  Here we observe that the support afforded from source i to any proposed 

fused solution is related to the credibility of the source, the reasonableness of value provided by 

the source, the reasonableness of the proposed fusion solution and the compatibility of the data 
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and solution. 

 Let us see how the introduction of reasonableness affects our results about boundedness 

and minimal solution sets. 

 Consider the case in which our underlying proximity relationship is very precise, 

Comp(x, y) = 1 iff x = y and Comp(x, y) = 0 x ≠ y.  Let B be the set of input values and let B be 

the subset of B such that b ∈ B if R(b) ≠ 0.  If a ∉ B then Comp(a, ai) = 0 for all ai and hence 

Supi(a) = 0 for all i.  Let d ∈ B - B, here R(d) = 0  and again we get that Supi(d) = 0 for all i.  On 

the other hand for b ∈ B then R(b) ≠ 0 and b = aj for some j and hence Supj(b) > 0.  Thus, we see 

that we will always find our solution in the space B, the set of data values that are not completely 

unreasonable. 

 Consider now the case in which Prox is an ordinary equivalence relation.  Again let B be 

our set of input data which have some degree of reasonableness.  Let Ei be the equivalence class 
of ai, for all y ∈ Ei, Prox(y, ai) = 1.  Let E =»

i
Ei, the union of all equivalence classes that have 

input value.  If a ∉ E then Prox(a, ai) = 0 for all i.  From this we see that if a ∉ E then Supi(a) = 0 

for all i and hence we can always find at least as good a solution in E.  We can obtain a further 
restriction on the minimal solutions.  Let Di ⊆ Ei be such that di ∈ Di if R(di) = Maxx∈Fi(R(x)).  

Thus, Di is the subset of elements that are equivalent to ai and are most reasonable.  For any di ∈ 

Di and any ei ∈ Ei we have that for all input data aj, Comp(ei, aj) = Comp(di, aj).   Since R(di) ≥ 

R(ei) we see that Supj(di) ≥ Supj(ei) for all j.  Hence di is always at least as good a fused value as 
any element in Ei.  Thus, we can always find a fused solution in D = »

i
 Di.  Furthermore, if x 

and y ∈ Di then R(x) = R(y) and Comp(x, z) = Comp(y, z) for all z.  Hence Supi(x) = Supi(y) and 

Sup(x) = Sup(y).  The result is that we can consider any element in Di.  Thus all we need consider 
is the set D = »

i
{di} where di is any element from Di.  We note that if ai ∈ Di then this is of 

course the preferred element.   

 We now consider the case where the proximity relationship is based on a linear ordering L 
over space X.  Let B be the set of data values provided by the sources.  Let x* and x* be the 

maximal and minimal elements in B with respect to the ordering L.  Let H be the set of xj so that 
x* >

L
 xj >L

 x*.  In the preceding we showed that we can always find a fused value element a in H.  
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We now show that the introduction of reasonableness removes this property. 

 In the preceding we indicated that for any proposed fused value we get that 

Supi(a) = g(ui, Compi(a)) where g is monotonic in both the arguments, ui = wi ∧ R(ai) and 

Compi(a) = R(a) ∧ Comp(a, ai).  We shall now show that here we can have an element a ∉ H in 

which Supi(a) ≥ Supi(b) for all b ∈ H.  This implies that we can't be guaranteed of finding the 

fused value in H.  Consider now the case in which there exists b ∈ H for which R(b) ≤ α.  In this 

case Supi(b) = g(ui, R(b) ∧ Comp(b, ai)) ≤ g(ui, α)  Let a ∉ H be such that R(a) > α.  For this 

element we get Supi(a) =  g(ui, R(a) ∧ Comp(a, ai)).  If Comp(a, ai) > α then R(a) ∧ Comp(a, ai) 

= β then β > α and hence Supi(a) =  g(ui, β) ≥ g(ui, α) = Supi(b) and then it is not true we can 

eliminate a as a solution.  Thus we see that the introduction of this reasonableness allows for the 

possibility of solutions not bounded by the largest and smallest of input data. 

 An intuitive boundary condition can be found in this situation.  Again let H be the subset 
of X bounded by our data: H = {x| x* >

L
 x >

L
 x*} where let α* = R(x*) and let α* = R(x*).  Let 

H* = {x| x >
L

x* and R(x) > R(x*)} and H* = {x|x >
L

x* and R(x) > R(x*)}.  Here we can restrict 

ourselves to looking for the fused value in the set H = H ∪ H* ∪ H*.  We see that as follows.  For 
any x >

L
x* we have, since the proximity relationship is induced by the ordering, that Comp(x, ai) 

≤ Comp(x*, ai) for all data ai.  If in addition we have that R(x) ≤ R(x*) then Supi(x) = g(ui, R(x) 

∧ Comp(x, ai)) ≤ Supi(x*) = g(ui, R(x*) ∧ Comp(x*, ai)) for all i and hence Sup(x) ≤ Sup(x*).  
Thus we can eliminate all x >

L
x* having R(x) ≤ R(x*). Using similar arguments we can eliminate 

x >
L

x* which have R(x) ≤ R(x*). 

10. Granular Objects as Fused Value 

 In the preceding sections we considered the situation in which we were required to find, as 

the fused value, some solution that was an element of the set X.  We now look at the situation in 

which we allow our solution to be some subset of X.  The use of subsets as our fused value is an 

example of what Zadeh [9] calls granulation.  For simplicity we initially will not include any 

considerations of reasonableness and credibility. 

 Again assume V can take its value in X.  Let our data be the collection ai for i = 1 to q.  

These are the values we desire to fuse.  Here we assume the existence of a proximity relationship 
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Prox on X × X where Prox(x, y) takes it value in an ordered space T which for simplicity in the 

following we shall assume to be the unit interval. 

 Let A be any subset of X.  Using the approach introduced in the preceding we define the 

support for A as the fused value 

Sup(A) = F(Sup1(A), Sup2(A), ..., Supq(A)) 

As in the preceding we then select as our fused value the subset A having largest value for Sup. 

 Here Supi(A) is the support for A from data ai it is the compatibility of ai with A which 

we obtain as  

Supi(A) = Maxy∈A[Comp(y, ai)], 

the maximal compatibility of ai with any element in A.  We note that if A is a fuzzy subset we can 

express this as 

   Supi(A) = Maxy∈X[A(y) ∧ Comp(y, ai)] 

Recalling that Comp(y, ai) is the  support for y from ai we can express Supi(A) as 

   Supi(A) = Maxy∈X[A(y) ∧ Supi(y)] 

 The extension of this situation to include considerations of credibility of the data, wi and a 

reasonableness function over X is rather straightforward.  Here we recall  

   Supi(y) = g(ui , R(y) ∧ Comp(y, ai)) 

where ui = wi ∧ R(ai).  Using this we can get  

  Supi(A) = Maxy∈X[A(y) ∧ g(ui, R(y) ∧ Comp(y, ai))] 

If we further assume that g is implemented using an anding,  

  g(ui, R(y) ∧ Comp(y, ai)) = ui ∧ R(y) ∧ Comp(y, ai) 

we get that 

  Supi(A) = ui ∧ Maxy∈X[A(y) ∧ R(y) ∧ Comp(y, ai)] 

 In the following discussion we shall initially neglect considerations of credibility and 

reasonableness, we assume wi = 1 for all i and R(x) = 1 for all x.  In this case Supi(A) = 

Maxy∈X[A(y) ∧ Comp(y, ai)]. 

 Usually when we allow subsets as the fused value there are some constraints on which 

subsets we can use.  First however, let us consider the situation in which we have no explicitly 

stated restriction on which subsets we can use as the fused value.  Let B be the subset of all the 
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data, B = {a1, ..., aq}.  Here Supi(B) = Maxy∈B[Comp(y, ai)] and since ai ∈ B then Supi(B) = 1 

for all i.  From this it follows that for any other subset A of X, Supi(B) ≥ Supi(A) hence Sup(B) ≥ 

Sup(A).  Thus, if we have no restrictions on which subsets we can use as the fused value, the best 

solution is always the subset consisting of all the input data values.  We note that even in the case 

of introducing differing credibilities associated with the sources the set B is still the best answer.  

This however may not be the case when we consider reasonableness. 

 Let us now turn to the more usual situation in which there are some constraints on which  

subsets we allow as the fused value.  Sometimes these constraints are explicit, other times they 

may implicit. 

 A number of methods can be described for introducing meaningful constraints on the 

allowable subsets.  One approach is to supply the system with a collection of subsets of X from 

which it must select the fused value.  We call this the case of a user supplied vocabulary.  In this 

case if A = {A1, ..., Am} is the user supplied vocabulary we then select as our fused value subset  
A* ∈ A such that Sup(A*) = Max

A j ŒA
 [Sup(Aj]].  We pick the term (subset) in the vocabulary with 

the largest support.  Here considerable use can be made of fuzzy set theory and Zadeh's related 

idea of computing with words [22] to provide a mechanism for representing linguistic concepts in 

terms of sets.  A prototypical example of this situation is one in which the Aj are a collection of 

fuzzy subsets, corresponding to linguistic terms related to the variable V.  For example, if V is age 

then these could be terms like old, young, middle age.   

 Another, and more general, approach to restricting the subsets available as outputs of the 

fusion process is to use a measure on space of subsets of X to indicate our constraints.  In this case 

our measure is a mapping µ: 2X → [0, 1].  Here for any subset of A of X, µ(A) indicates the 

degree to which it is acceptable to the user to provide A as the fused value.3  We can denote this 

measure as the Client Acceptability Measure (CAM). 

 With the availability of such a measure we can proceed in the following manner.  We 

calculate the support for A by source i as 

                                            
3We could define µ over the set of fuzzy subsets µ:IX → [0, 1]. 
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   Supi(A) = µ(A) ∧ Maxy[A(y) ∧ Supi(y)] 

where as in the preceding, Supi(y) = g(wi ∧ R(ai), Comp(y, ai) ∧ R(y)).  Thus µ(A) bounds the 

support available from any source. 

 If we neglect the reasonableness, assume R(x) = 1 for all x ∈ X, and  assume wi = 1 then  

Supi(A) = µ(A) ∧ Maxy[A(y) ∧ Comp(y, ai)] 

  Let us look at some natural features of a measure µ which is used to convey the 

acceptability of considering a subset A as the fused value.  One characteristic of a set that may be 

important in determining its appropriateness as a fused value is its size or cardinality.  Since the 

fewer the number of elements in a subset, the more informative (useful) it is as a fused value, it is 

natural to consider smaller sets more acceptable then larger sets.  This observation is reflected in 

the general feature that µ(A) ≥ µ(D) if A ⊂ D.  A related property of this measure is that any 

subset consisting of a singleton should be completely acceptable, µ({x}) = 1. 

 In applying these CAM's in the manner described above we are essentially trying to reflect 

some criteria or requirements that a user has with respect to how they will use the fused value.  

Often these criteria reflect some operational or cognitive need of the user.  There are two 

attributes associated with a subset which can be used to help in the expression of these criteria 

within a CAM. 

 In general, when we allow subsets as fused values, we prefer them to contain elements that 

are consistent (similar) rather then a collection of diverse values.  In order to capture this feature 

of granularization we can make use of the proximity relationship.  Specifically, some indication of 

the internal compatibility of the elements in A can be used to capture this consideration in the 

determination of µ(A).  To express this notion we can suggest using as the internal compatibility 
of the subset A, the formulation I-Comp(A) = Min

x,y ŒA
 [Comp(x, y)].  Thus, here we take the 

smallest compatibility of any two elements in A as its internal compatibility.  Thus, I-Comp(A) 

can be used to help in the formulation of µ(A) to aid in capturing this notion of consistency.  In 

the most basic application of this, we can define µ(A) = I-Comp(A).  We note that if A ⊂ D then 

I–Comp(A) ≥ I–Comp(D).  If A is a singleton set, A = {x}, since Comp(x, x) = 1 for all x then I–

Comp(A) = 1. 
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 In the above we implicitly assumed that A was a crisp set.  In the case where A is fuzzy 

we can define 
   I-Comp(A) = Min

x,y ŒA
 [(A(x) ∧ A(y)) ∨ Comp(x, y)] 

where A(x) = 1 - A(x).  Other more sophisticated definitions of the notion of internal 

compatibility of a set be can be obtained with the use of soft computing technologies  such as 

fuzzy modeling [23] 

 The second feature of a subset that can be used in the formulation of the CAM to help 

reflect the user desires is the cardinality of a subset.  As we have noted this can help capture the 

fact that users typically prefer smaller sets to bigger sets.  Here we shall not pursue this topic but 

only indicate that considerable use can be made of Zadeh's fuzzy set based idea of computing with 

words  to relate information about the cardinality of a set A and its value µ(A).  For example, we 

can capture a user's desire that the fusion set contain only a few elements.  In this case we can, 

using Zadeh's idea of linguistic quantities [24], represent only a few as a fuzzy subset Q of non-

negative integers in which Q(1) = 1 and Q(x) ≥ Q(y) if x < y.  Then for any A, Q(Card A) can be 

used to indicate µ(A).  

 The construction of µ(A) must take into account the preferences of the user as well as the 

structure of the underlying proximity relationship.  Consider the situation in which Prox is an 

equivalence relations.  In this case we see I-Comp(A) = 0 if there exists x and y ∈ A from 

different equivalence classes.  Thus I-Comp(A) =1 iff A is contained in an equivalence class, 

otherwise it is zero.  In this situation it would appear that the construction of µ using I-Comp(A) 

is not appropriate.  Here, when the proximity is an equivalence relationship it is best to construct 

µ based on some function of the cardinality of A. 

 We point out that the description of a user supplied vocabulary can be made with the use 

of a CAM µ in which all words in the vocabulary have µ(A) = 1 and all those not in the 

vocabulary have µ(A) = 0.  In some situations we may describe our desired fused sets using both a 

user supplied vocabulary as well as criteria based on I-Comp(A) and/or the cardinality of A.  An 

important example of this arises in the case where our proximity relationship is based on a linear 

ordering L on X.  Here we may require that our fused subsets be intervals.  We recall that A is 
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an interval if there exists some x and z ∈ X such that A = {y| x >
L

 y >
L

 z}.  In this case we may 

also associate with each interval a value µ2(A) which depends on I-Comp(A) and a value µ3(A) 

which depends on Q(Card A).  Then we use  

   µ(A) = µ1(A) ∧ µ2(A) ∧ µ3(A) 

where µ1(A) = 1 if A is an interval and µ1(A) = 0 if A is not an interval. 

 

11. Multiple Granular Objects as Fused Values 

 In the following we shall make some other observation regarding the presentation of fused 

information.  Initially we addressed the problem of selecting an element from X as our fused 

value.  We then considered the situation in which we allowed our fused value to be some subset of 

X.  In this case our fused value is essentially multiple elements from X.  Here we introduced a 

CAM,  measure µ on X, to reflect the users desires with respect to acceptability of different 

subsets 

 We will now take this one step further by considering the situation in which we allow as 

the multiple subsets of X as the fused value.  For example,  multiple intervals or multiple user 

vocabulary words.  Here a basic consideration is how many subsets can we use.  In order to do 

this we must introduce an additional measure η.  Let C be a set whose elements are subsets of X, 

if P is the power set of X, C is a subset of P.  We define η:P → [0, 1], where for any C, 

η(C) ∼ Q(Card(C)).  That is η(C) depends on the cardinality of C, the number of subsets of X in C.  

Thus if q is any integer Q(q) indicates the acceptability of providing q subsets.  Here we require 

Q(1) = 1 and generally we expect Q(i) ≥ Q(j) if i < j. 

 Using this we can now express the support of any subset C of the power set as  

   Sup(C) = F(Supi(C), ..., Supi(C)) 

Let us determine the support for C from i.  We can express this as: 

  Supi(C) = η(C) ∧ MaxA∈C[Supi(A)] 

Thus Supi(C) depends upon the support from source i for all the subsets of X that are in C.  Since 

we have already provided a way for determining Supi(A) we are able to determine Supi(C).  We 

note that if η(C) = 0 for Card(C) > 1 we then have effectively reduced this to a case where we 
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only allow one subset.   
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PART II. FUZZY METHODS IN WEB QUESTION ANSWERING 
SYSTEMS 

 

1. Introduction 

 The wide spread availability of the internet has generated considerable interest in 

electronic sources of information.  Various types of software applications have been developed to 

support this interest.  We can generically refer to these as Applications Useful for Seeking 

Information. (AUSIN).  One widely used class of these AUSIN is search engines.  These 

applications retrieve pointers to pages or files based on their matching some key words specified 

by the user.  Another widely used class of AUSIN is data base systems.  In some ways database 

applications and search engines are opposite extremes of these AUSIN.  Database applications 

give precise information however, they only work in highly structured environments.  The search 

engines while only giving imprecise responses in the form of pointers are capable of functioning 

in highly unstructured almost chaotic environments.  However, neither of these two applications 

typically have a reasoning capacity. 

 Another class of AUSIN is question answering systems [1-6].  An important dimension 

along which question answering systems differ from search engines and most databases is in their 

reasoning ability [6].  A fundamental characteristic of question answering systems is its ability to 

reason over its information base.  This facility leads to a fundamental difference in the nature of 

their response to queries.  In particular the response from a search engine is a pointer to a 

document (file or web page) resident in its library4.  The database responds essentially by 

providing some value already resident in the database.  A question answering system, because of 

its reasoning capacity, can construct new knowledge that is not resident in its knowledge base in 

response to a query.  While currently less pervasive then either of the other information seeking 

systems, question answering systems with reasoning ability have the potential of being much 

                                            
4We use the word library very broadly in that it could mean a subspace of the internet 
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more useful with regards to there responding to the real desires of the human user. 

 Intelligent question-answering systems generally require a gathering of information 

relevant to a question to be answered and then a processing of (reasoning over) this information.  

The processing often requires some appropriate representation of the information to be used.  The 

general chaotic nature of the Internet makes the dynamic unrestrained gathering and subsequent 

representation of information very difficult.  It often requires levels of understanding well beyond 

our current capability for computational intelligence5.  The manipulation of appropriately 

gathered and represented knowledge is more within our current grasp. 

 Our point of departure in this work will be the availability of a domain knowledge base 

that has been built, with the aid of possible human interaction, using knowledge obtained from the 

internet as well as local domain knowledge.  We do not preclude the system from dynamically 

interacting with appropriate Internet sources in response to queries.  We can envision knowledge 

bases of this type being available within many organizations. 

 While the types of questions envisioned to be processed by future question answering 

systems is wide and varied in this work, we restrict ourselves to questions related to finding the 

value of some attribute variable using the information in the knowledge base. 

 Our interest in this work is on the development of tools to help in the representation of 

various types of knowledge as well as on the development of a framework and mechanism for 

reasoning and manipulating the knowledge in response to users questions. 

 Our approach will be in the spirit of Zadeh's paradigm of computing with words [7, 8].  In 

providing a schema for representing and locally manipulating knowledge we shall rely heavily on 

the fuzzy set based theory of approximate reasoning [9] and particularly the idea of protoforms 

[10, 11].  Considerable use will be made of knowledge trees [12, 13] to provide a global 

framework for structuring and directing the process of answering a question posed to the system.  

As we shall subsequently see a knowledge tree takes the contents of the knowledge base and 

structures it in a manner to answer the question presented.  These trees can be seen as a 

mobilization of the knowledge base to address a particular task.  At a meta level the knowledge 
                                            
5This is to say nothing about the important problem of verifying the quality of the information. 
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tree provides a global plan for solving the problem, the answering of the question.  It is worth 

noting, although we shall not pursue it here, a knowledge tree can be used to help point directions 

for going outside our knowledge base for information to improve our answer. 

 

2. Basic Concepts of Approximate Reasoning 

 The primary elements in an Approximate Reasoning (AR) representation of a knowledge 

base are a collection of attribute variables, Vj for j = 1 to n, called the atomic variables.  These 

attribute variables are the objects of interest in the current context.  It is information about the 

value of these variables and relationships between them that constitutes the knowledge of interest.  

Associated with each variable Vj is a set Xj, indicating the allowable values for the variable.  The 

terms base set, domain and universe of discourse are used to indicate the set Xj.  A joint variable 

is any tuple of one or more distinct atomic variables; V3, (V2, V5) and (V1, V2, V6) are 

examples of joint variables.  Associated with any joint variable is a base set consisting of the 

Cartesian product of the domains of the individual variables making up the joint variable.  Thus, if 

a joint variable has q components, its domain is a set of q-tuples.   It is implicitly assumed, unless 

otherwise stated, that the variables of interest can assume only one value in its base set (see [14] 

for a discussion of different variable types).  

 A categorical proposition (or statement) in theory of approximate reasoning is of the form 

V is A, here V is a joint variable and A is a fuzzy subset6 of the domain of V.  A proposition 

involving only one variable is called a canonical proposition while those involving two or more 

variables are called relational or joint propositions.  A large variety of types of knowledge can be 

represented by propositions of the above form. 

 A proposition in AR is viewed as imposing constraints on the possible values of the 

variables involved.  For example, if A is a crisp subset then the meaning of the proposition 

V1 is A is to indicate that the value for the variable V1 is restricted to be a member of the set A, 

                                            
6We shall follow the convention of expressing a fuzzy subset A of X as ∪

x ∈ X
{A(x)

x
}. 
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that is elements in A are the only possible values for V1.  The use of fuzzy subsets provides for a 

grading of this idea.  If B is a fuzzy subset, then one meaning of the proposition V1 is B is that for 

any x ∈ X1, B(x) indicates the possibility that V1 = x.  If V = (V1, V2, V3) is a joint variable then 

the meaning of the proposition V is M is that for any (x1, x2, x3) ∈ X1 × X2 × X3, M(x1, x2, x3) 

is the possibility that V1 = x1, V2 = x2, and V3 = x3.  Thus, we see that the knowledge 

represented by the propositions is essentially contained in the fuzzy subsets associated with the 

propositions.   

 We shall say a proposition, V is M, is normal (consistent) if Maxx[M(x)] = 1, then there 

exists at least one element in the base set of V that has possibility one.  We shall call a proposition 

subnormal if Maxx[M(x)] < 1.  We call a proposition V is M a tautology if M(x) = 1 for all x in 

the domain of V.  It should be noted that a tautology existentially provides no restriction of the 

value of a variable and thus induces no new information other than that the variable must be in its 

base set. 

 When using the AR framework we are generally involved in one of three tasks.  The first 

task, translation or knowledge representation deals with the process of taking knowledge normally 

expressed in natural language and converting it into an appropriate representation within the 

framework of AR.  We construct our knowledge base via this translation process.  The second 

task is extracting information from the knowledge base.  This task is called the inference process.  

It involves the manipulation of propositions to obtain other propositions.  The third task is that of 

retranslation, where we are interested in converting the propositions obtained via the inference 

process into statements of natural language.  Here we shall mainly focus on the second task, 

inference, and to a lesser extent on the translation task.  In [8] we have addressed the retranslation 

problem. 

 The basic operations used for knowledge manipulation within the AR framework are 

conjoin, containment and negation.  We now look at these operations. 

 The conjoin operation provides the system with the facility for combining or fusing 

information.  In the translation process it allows us to represent knowledge involving multiple 

variables and allows us to construct joint variables from atomic variables.  The inference process 

uses this operation to combine individual pieces of knowledge.  The operation of conjoin is a 
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generalization and unification of the set operations of conjunction and cartesian product.  It is also 

closely related to the join operation used in the databases. 

Definition: Assume Va and Vb are two joint variables on the universes X and Y respectively.  Let 

Va is D and Vb is E be two propositions.  Their conjoin (conjunction) denoted Va is D ×Vb is E is 

the proposition V is F.  Here V is a joint variable consisting of the union of the atomic variables 

making up Va and Vb.  F is a fuzzy subset of the domain of V, Z, such that for each z ∈ Z we 

have 

    F(z) = D(x) ∧ E(y) 

where x is the portion of z corresponding to the domain X and y is the portion corresponding to 

the domain Y.  The operator ∧ is the Min, although more generally it can be a t-norm [15]. 

 In the case when the two variables being conjoined are the same the conjoin operation 

reduces to the usual intersection of fuzzy sets: 

  Va is D × Va is E = Va is F where F = D ∩ E 

In this situation we shall sometimes find it convenient to use ∩  in place of ×.  In the case when 

the two joint variables being conjoined have no common variables this operation reduces to the 

cartesian product: Va is D × Vb is E = (Va, Vb) is F where F = D × E. 

 We now define a special conjoin operation.  This operation plays a role in making 

propositions which are not necessarily about the same variable be about the same variable. 

Definition: Assume Va and Vb are two joint variables such that Vb contains all the variables that 

are in Va.  The cylindrical extension of the proposition Va is F to the proposition Vb is F° is 

defined by 

  Vb is F° = Va is F × V1 is X × V2 is X2 ×...... × Vq  is Xq 

where V1, V2, ....., Vq are the atomic variables in Vb that are not in Va and the Xi's are the base 

sets of these variables. 

Note: We can equivalently express this cylindrical extension of Va is F to Vb by 

  Vb is F° = Va is M × Vb is X 

where X is the domain of the variable Vb. 

 The membership function F° can be obtained from the membership function of F by 

setting F°(y) = F(x) where x is the tuple in the base set of Va that corresponds to the portion of y 
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in this subspace. 

 We now turn to the second basic operation used in approximate reasoning, containment.  

At a very fundamental level this operation provides us with a facility for ordering propositions in 

approximate reasoning. 

Definition: Assume Va is D and Vb is E are two propositions, we say that Va is D contains 

Vb is  F denoted Vb is E ⊆Va is D if 

   F°(z) ≥ D°(z) for all z 

where F° and D° are the cylindrical extensions of F and D to the base set of variable V, the union 

of the atomic variables in Va and Vb. 

Note 1: If Va and Vb are the same variables then this is the definition of fuzzy containment 

suggested by Zadeh [16]. 

Note 2: It can be shown that if P1 and P2 are two propositions and P3 = P1 × P2 then 

   P3 ⊆ P1 and P3 ⊆ P2.  

 Containment allows us to define equivalence of propositions.  

Definition: Two propositions P1 and P2 are equivalent if P1 ⊆ P2 and P2 ⊆ P1, we shall denote 

this as P1 = P2 

Note: Equivalent propositions are interchangeable under conjoin, assume P1 and P2 are 

equivalent, P1 = P2, and let P4 be any other proposition then P1 ×  P4 = P2 × P4 

 The third basic operation in AR is negation.  While the other two operations involve more 

than one proposition involves only one proposition. 

Definitions: Assume V is A is a proposition where the domain is X.  The negation of V is A, 

denoted not (V is A) is the proposition V is A, A(x) = 1 - A(x) for each x. 

 An important relationship exists between negation and containment 

Theorem: If Va is A ⊆ Vb is B then Vb is B ⊆ Va is A 

 Proof: If Va is  A ⊆ Vb is B then for all z in the extensions A°(z) ≤ B°(z), this implies 

A°(z) ≤ B°(z) and the result follows. 

 We shall here introduce an operation which is based upon a combination of conjoin and 

negation. 

Definition: Assume Va is A and Vb is B are two propositions.  The operation ⊥ is such that 
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  Va is A ⊥ Vb is B = not (Va is A ×Vb is B) = (Va is  A × Vb is  B). 

Note: Va is A ⊥ Vb is B can be expressed as V is D where V is the union of the atomic variables 

in the joint variables Va and Vb and D is a fuzzy subset on the universe of V such that 

   D(z) = A(x) ∨ Β(y), 

where ∨ is the Max operator, x is the component of the tuple z corresponding to the domain of Va 

and y is a component of the tuple z corresponding to the domain of Vb.   

Note: If Va and Vb are the same the operator ⊥   is the union.  With this in mind we shall use 

∪ synonymously with ⊥. 

 The preceding operations are essentially logical operations.  We now introduce another 

operation that will play an important role in the process of question-answering is the Zadeh 

extension principle [14, 16-18]. 

 Assume X and Y are two crisp subsets and let f be a mapping from X into Y, f: X → Y.  
Here for each x ∈ X, we have f(x) = y ∈ Y.  Assume A = ∪

x ∈ X
{A(x)

x } is a fuzzy subset of X 

using the Zadeh extension principle, we can define f(A) as a fuzzy subset  of Y such that 
   f(A) = ∪

x ∈ X
{A(x)

f(x)
} 

We see the Zadeh extension principle allows us to extend operation on elements of a set to act on 

fuzzy subsets  

 As a simple illustration assume X = {1, 2, 3} and Y = {a, b, c, d, e}.  Let f: X → Y be 

defined as f(1) = a, f(2) = e and f(3) = b.  Let A = {1
1

, 0.7
2

, 0.4
3

}then f(A) = {1
a, 0.7

e , 0.4
b

}. 
Note 1: It can be shown that if we denote B = f(A) then B(y) = [A(x)]Max

all x, s.t
f(x) = y 

 

Note 2: Often the extension principle is used when the spaces X and Y are the same.  For example 

if f is y = 2x. 

 The Zadeh extension principle can be generalized.  Let X1, X2, ...., Xn and Y be a 

collection of sets.  Assume f is a mapping f: X1 × X2 × ... × Xn  → Y.  That is for each tuple 

(x1, ...., xn) ∈ X1 × X2 × ... × Xn we have f((x1, ...., xn) = y ∈ Y.  Let Ai be a subset of Xi. The 

extension principle allows for the evaluation of f(A1, ...., An).  Denoting F(A1, ...., An) = B where 
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B is a fuzzy subset of Y we have B = ∪
x1, ... xn

{Min[Ai(xi)]
f(x1, ... xn)

} thus we have  

B(y) = Max
all x1, ..., xn s.t
f(x1, ..., xn) = y 

 [A1(x) ∧ A1(x) ∧ ..... ∧ An(xn)] 

 This form of the extension principal allows us to define arithmetic operations on fuzzy 

numbers.  Assume R is the set of real numbers.  Addition is a mapping from R × R into R.  That is 

for each x, y ∈ R we have f(x, y) = z where x + y = z.  If A and B are two fuzzy numbers their 
sum C = A + B is a fuzzy number so that C = {A(x) ∧ B(x)

x + y
}∪

all (x, y)
.  Here we see for any z ∈ R 

   C(z) = Max
all (x, y) s. t.

x + y = z

[A(x) ∧ B(y)]  

 More generally if ⊥ is any binary arithmetic operation then with A and B fuzzy numbers 
we have A ⊥  B = C where C is also a fuzzy number such that C = {A(x) ∧ B(x)

x ⊥ y
}∪

all (x, y)
.  

Equivalently for all z ∈ R we have C(z) = Max
all (x, y) s. t.

x ⊥ y = z

[A(x) ∧ Β(y)].  Here ⊥ can be addition, 

subtraction, multiple, division, exponentiation.  It also can be the maximum or minimum of two 

numbers. 

 We shall provide another form of the extension principle involving fuzzy subsets   In 

anticipation of providing this form of the extension principle we introduce the idea of level sets.  

Let A be a fuzzy subset of X the α level set of A, denote Aα, is a crisp subset of X defined as 

Aα = {x/ A(x) ≥ α}.  Again let X at Y be two crisp subset and assume G: 2X → Y, it is a 

mapping from subsets of X, into Y.  We can extend G to map fuzzy subsets of X.  In particular. 
G(A) = { α

G(Aα)
}∪

α ∈ [0, 1]
.  Here G(A) is a fuzzy subset of Y 

 

3. Semantics of AR the Knowledge Representation 

 An important task in the use of the AR framework in question-answering systems is the 

translation of our knowledge from statements in a natural language into propositions in AR.  Here 

we first provide some basic understanding of the semantics of our formal representation.  The 

most basic translation rule is the assignment of a value to an atomic variable.  An example of this 

occurs if we have the information that John is young.  We first represent the concept young as a 

fuzzy subset A and then assign it to constrain the value of the variable V, Johns age.  Using this 
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representation we are saying that there is some uncertainty with regard to our knowledge of the 

value of V and A(x) is the possibility that V = x. 

 Some specific cases of A are worth noting.  If A = {x*}, a singleton, then V is A conveys 

the fact that x* is the exact value of V.  This is equivalent to the ordinary statement V = x*.  

Another special case is when A is a crisp set.  In this case, the statement V is A is effectively 

indicating that V is an element in A, V ∈ A.  Another important example of this is when A = X.  

Here we are saying that A can be any value in X.  This corresponds to the case when we have no 

knowledge about V other then its domain.  It is clear that this corresponds to a least restrictive 

constraint and can always be assumed.   

 We note that if Maxx[A(x)] < 1 then there is no element in X having a possibility of one of 

being the value of V.  It is an indication of some conflict between our knowledge and the 

assumption that V must assume its value in X.  The extreme case is when A = ∅, here no element 

has any possibility of being the value of X.  The information out of which the knowledge base is 

constructed is usually assumed to involve fuzzy subsets that are normal, Maxx[A(x)] = 1.  The 

conflicts generally arise as a result of the process of combining pieces of knowledge.   

 Consider the statement V is A, where for ease of explanation we assume A is crisp.  As we 

indicated, this statement is saying that our knowledge of V is that its value lies in the subset A.  If 

we know that the value of V lies in the subset A then if A ⊆ B we also know that the value of V 

lies in B.  For example, if we know that John is in his twenties then we can infer that he is over 

fifteen years old.  This can be seen as a kind of basic inference process.  We call this process 

entailment.  While we are able to go from smaller subsets to larger subsets with certainty we can't 

go the other way around, from larger subsets to smaller subsets with the same certainty.  For 

example, knowing John is in his twenties doesn't allow us to conclude that John is between 21 and 

23. 

 Consider now that we have two pieces of knowledge about the same variable; V is A and 

V is B.  Again for simplicity of discussion we shall assume A and B are crisp subsets.  The first 

statement indicates that the possible value for V lies in the set A and the second statement says 

that the possible value for V lies in the set B.  Consider the situation where one statement says 

John is between 10 and 20 and the other says that he is over 15.  In this case we can conclude that 



 

 

41 
 
 

he is between 15 and 20.  More generally in the case of multiple pieces of information we take the 

conjunction; that is, we conclude V is D where D = A ∩ B.  As we shall subsequently see the 

processes of conjunction and entailment form the basis of reasoning.   

 As we have indicated, statements of the form V is A allows for a representation which can 

capture uncertainty in our information.  A number of measures have been introduced to help 

quantify different aspects of the uncertainty associated with these propositions.  One of these is 

the concept of specificity of a fuzzy subset.  In [19] Yager describes its properties and a number 

of possible formulations for quantifying it.  Assume A is a fuzzy subset of X and let x* be an 

element with maximal membership grade in A, A(x*) = Maxx[A(x)], and let Averx*∉X[A(x)] be 

the average of all membership grades in A excluding x*, then we define the specificity of A as 

Sp(A) = A(x*) - Averx*∉X[A(x)].  We see some properties of this measure: 1. Sp(A) = 1 if A 

consists of exactly one element, A = {x}.  2.  Sp(∅) = Sp(X) = 0.  3.  If A and B are two normal 

fuzzy subsets of X, then Sp(A) ≥ Sp(B) if A ⊂ B. 

 One application of the concept of specificity is that it provides a measure of the amount of 

information contained in a proposition in AR.  Thus if P, is a proposition expressible as V is A 

then the amount of information contained in P, Inf(P) = Sp(A).  An important tool in AR is the 

principle of Minimal Specificity [20].  This states that if we have a number of different possible 

representations of some piece of knowledge, then we should choose the one with the minimal 

specificity.  We see this as being akin to the principle of maximal entropy in probability theory.  

Another related use of specificity is that a property of a valid inference is that it never increases 

specificity.  Thus, if we infer P2 from P1, P1 a  P2, then it must be the case that 

Sp(P1) ≥ Sp(P2).  That is inference doesn't allow us to increase information.   

 We now turn to another measure of uncertainty.  Assume V is A and V is B are two 

propositions in AR.  We define the possibility of V is A given V is A, denoted Poss[V is A/V is 

B] as Maxx[F(x)] where F = A ∩ B.  Possibility measures the degree to which two propositions 

have some solution in common.   

 A related measure is the certainty measure.  The certainty of V is A given V is B, is 

defined as Cert[V is A| V is B] = 1 - Poss [V is A| V is B].  If B is normal then Poss[V is A | V is 

B] ≥ Cert[V is A | V is B].  If B is a singleton, B = {x*} then Poss[V is A | V is B] = Cert[V is A 
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| V is B] = A(x*) 

 We note that Poss is a measure of the degree of intersection of A and B and Cert[A|B] is a 

measure of the degree to which B is contained in A.  An important interpretation of the measures 

of possibility and certainty are respectively as the upper and lower bounds of the truth of the 

statement.  Va is A given the knowledge that Vb is B. 

 

4. Τranslation of Information 

 An important step in the construction of question-answer systems is the translation of our 

knowledge from statements in a natural language into propositions in AR.  A study of Zadeh's 

[21, 22] work will provide a large collection of translation rules.  Here we discuss some of these.  

 As we have already indicated, the basic statement involves the association of a fuzzy 

subset with a variable.  Here we shall see how to build more complex representations using this 

basic building block.   

 Assume P is a statement that has representation as Va is A and Q is a statement with 

representation as Vb is B.  Using these we obtain the following translation rules. 

 • not (P) is represented as Va is A where A is the negation of A, A(x) = 1 - A(x) 

 • P and Q is represented as Va is A × Vb is B.  In the special case where Va = Vb we have 

Va is A ∩ B. In another special case where Va and Vb are disjoint we get  (Va, Vb) is D where  

D(x,y) = Min(A(x), B(y)).  Another case which will be useful is where we have partial over lap 

that is Va = (V1, V2) and Vb = (V1).  If we let X and Y respectively be the domains  of V1, and 

V2 then we get (V1, V2) is E when E(x,y) = Min[A(x,y), B(x)] 

 • P or Q is translated as Va = A ⊥ Vb is B.  In the special case where Va = Vb we get 

(Va, Vb) is D where D = A ∪ B, D(x) = Max[A(x), B(x)].  In the case when Va and Vb are 

disjoint we get Va is E where E(x,y) = Max(A(x), B(y)] 

 • If P then Q is represented as Va is A ⊥ Vb.  In the special case where Va and Vb are 

disjoint we get  (Va,Vb) is E where E(x, y) = Max[A(x), B(y)] 

 In the preceding we have discussed the representation the kinds of knowledge whose 

structure is very close to the class of propositions appearing in classical logic.  The knowledge 
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that can be represented in the AR framework does not have to be restricted to these kinds of 

classical examples.  More generally the AR paradigm of translating knowledge into statements 

constraining the values of the relevant variables can be applied to a large variety of knowledge.  A 

simple illustration of this involves the knowledge that Faye and Lotfi are close in age.  If Va 

represents the variable Faye's age and if Vb represents the variable Lotfi's age then we represent 

this knowledge as (Va, Vb) is CLOSE.  Here CLOSE is a fuzzy relationship such that for each 

pair of ages x and y the membership grade CLOSE(x, y) indicates the degree to which x and y 

satisfy the condition of being close. 

 An important class of knowledge involves functional relationships.  Many scientific 

disciplines represent their knowledge in this manner.  In addition, modern technological tools 

such as data mining use functional relationships to express the knowledge they discover [23].  

Tools are available for translating functional relationships into propositions in AR.  Let us look at 

some of these. 

 Let V and U be two disjoint variables with domains X and Y.  A functional relationship, 

U = f(V) is a mapping f: X → Y such that y = f(x); it assigns to every value x in X a value Y.  We 

can represent this knowledge in the AR framework as propositions of the form (V, U) is F where 
F is a relationship on the space X × Y such that F = ∪

x∈X
{(x, f(x))}. Thus F is the union of all 

pairs (x, F(x)) which are solutions to U = f(V). 

 A special type of functional relationship are those commonly known as fuzzy models or 

fuzzy graphs [24].  We denote this type of fuzzy relationship as Vb = F(Va) where Va and Vb are 

disjoint variables with domains X and Y.  In this case instead knowing exact pairs of points we 

have a collection of fuzzy solution points, Pi and the relationship is the disjunction of the set 

points.  A fuzzy solution point Pi, is characterized by a pair <qi, ri>, qi ≡ Va is Ai and ri ≡ Vb is 

Bi, and is defined as the conjoin of the components of the pair, Va is Ai × Vb is Bi and thus it is a 

proposition of form (Va, Vb) is Pi. Since the relationship between these fuzzy solution points in a 

disjunction then the overall function relationship F = P1 or P2 or ..... or Pn.  More formally Vb = 

F(Va)  is represented as   

  F = <qi, ri> ⊥ <q2, r2> ⊥ ..... ⊥ <qn, rn>. 
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This results in a proposition of the form (Va, Vb) is P1 ⊥ P2 ⊥ ..... ⊥ Pn 

 Another feature of the AR framework is the ability to include in the representation 

knowledge about the certainty or more generally an importance weight of a proposition.  This is 

accomplished through the process of certainty (or importance) qualification.  A statement 

   V is A is α certain  

can be expressed as the proposition V is B where B(x) = α ∨ A(x).  Here it is assumed α ∈ [0, 1].  

We see if α = 1 then B = A and if α = 0 then B(x) = X, the whole space.  The case of α = 0 results 

in the proposition expressing no knowledge. 

 

5. Inference and Knowledge Manipulation 

 We now introduce the basic rules of inference available in AR [25].  In the following we 

use the notation (P1, ....., Pn)  a  Q to indicate that we can infer Q from the collection (P1, ....., 

Pn) 

 The first rule of inference is called the entailment principle.  This rule says that if P1 and 

P2 are two propositions such that P1 ⊆ P2 then from P1 we can infer P2.  We formally express 

this as inference rule 1 

  IR-1: (P1)  a  P2 if P1 ⊆ P2 

 One important application is the following.   If A and B are fuzzy subsets over the same 

universe such that A ⊂ B then from the statement V is A we can infer V is B.  

 A second important application of this inference rule is related to the process of projection. 

Definition: Let Va and Vb be two variables with domains X and Z respectively.  The projection 
of Va is A on Vb, denoted ProjVb

[Va is A] is defined as Vb is B where B(z) = MaxQ[A(x)].  

Here Q is the subset of elements in the domain of Va, X, which have the value as z for the atomic 

variables which Va and Vb have in common7.  (If Va and Vb are disjoint then B(z) = 1 for all z).   

 One important use of projection is the case where V = (V1, ...., Vn), where all Vi are 

                                            
7Assume V1, V2 and V3 are atomic variables with domains X1, X2 and X3 and let Va = (V1, V2) and Vb = (V1, 
V3).  If z = (x1, x3) then Q is the subset of X1 × X2 consisting of all points (x1, y) where y is any point in X2. 
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atomic variables and we desire ProjVi[V is A].  Let us first consider the special case V = (V1, V2) 

and we desire ProjV1[V is A].  We assume domain of V1 is X and the domain of V2 is Y.  In this 

case, we get V1 is B where B(xi) = Maxy∈Y[A(xi, y)].  More generally, if V = (V1,  ...., Vn) and 

Xi is the domain of Vi then ProjV1[V is A] = V1 is B where 

      B(x) = Max(x2, ...., xn) [A(x, x2, x3, ...., xn) 

B(x) is the maximal membership grade in A of any tuple containing x. 

 The usefulness of the projection operator lies in the fact [25] that if P1 ≡ V is A and 
P2 ≡ Va is ProjVa[V is A] then P1 ⊆ P2.  Thus using the entailment principle, IR-1, given V is A 

we can infer Va is B where B = ProjVa[V is A].  So we see that projection allows us to infer 

information about a single variable from information about joint variables.  This is sometimes 

called marginalization. 

Observation:   Assume (Va, Vb) is R where R is a subset of X × Y  If R is  such that for each 

x  ∈ X there exists a y ∈Y such that R(x, y) = 1 then ProjVa[V is A] = B is such that B(x) = 1 for 

all x.  Hence all we infer is Va is X which is essentially no knowledge. 

   The second rule of inference relates to the combination of multiple propositions.  Assume 

we have a collection propositions Pi for i = 1 to q.  Since, as we have previously indicated, a 

proposition Va is A places a constraint on the allowable values of the associated variable, the total 

effect of a collection of propositions can be seen to be the conjunction (anding) of the individual 

propositions.  This is the bases if the second inference rule 

   IR-2: {P1, P2, ...., Pn) a  P1 × P2 × ..... × Pn 

 We are now in a position to understand the process of reasoning, obtaining inferences 

from a knowledge base consisting of the collection {P1,  P2, ...., Pn).  The set of propositions in 

our knowledge base induces a combined restriction which is the conjunction of all propositions in 

the knowledge base, KB ≡ P1 × P2 × ..... × Pn.   Thus our knowledge base is also a proposition, V 

is A, which is the conjunction of all pieces of knowledge. 

 The use of IR-2, the conjunction of all the individual pieces of knowledge along with  IR-

2, the entailment principle, provides the bases of the reasoning mechanism 

Basic Inference: Proposition P is inferable from a KB of proposition P1,...., Pn denoted, (P1, ...., 

Pn)  a  P if P1 × P2 × ..... × Pn ⊆  P 
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 It is important to initially emphasize that the inference requires that we must use the whole 

knowledge base.   However, as we shall subsequently see, in some cases we need not use the 

whole knowledge to make inferences.  This simplification results in making the inference process 

tractable and useful.  In cases in which we must use the whole knowledge base, the process of 

reasoning becomes particularly onerous and often impractical. 

 We now introduce an important idea related to the concept of monotonicity. 

Definition:  We say that a proposition Q is monotonic if for any proposition P = V is A it is 

always the case P ×   Q ⊆  P.  If Q doesn't satisfy this condition we call it a non-monotonic 

proposition. 
 All the propositions that we have introduced so far are monotonic.  As we shall 

subsequently see non-monotonicity often arises in the representation of common sense 

knowledge. 

 In the following we shall assume all the propositions in the knowledge base are 

monotonic, we have a monotonic knowledge base.  The assumption of monotonicity allows for a 

great simplification in the reasoning process.  It is the basis of the type of deduction that is 

common in reasoning. 

 Let us understand the great significance of monotonicity.  The assumption of monotonicity 

implies that if (P1, ...., Pn)  a  P then (P1, ...., Pn, Pn+1) a  P.  It means that adding any 

proposition doesn't cause us to have to withdraw any inference.  More pragmatically it means that 

if we infer a piece of knowledge from some subset of the knowledge base we are sure it is valid 

for the whole KB 

 More specifically the assumption of monotonicity implies the following.  If {P1,...., Pn} is 

our knowledge base and if (P1, ..., Pq} and {P1, ...., Pr} are two subsets of the KB then. 

      M1. If (P1, ..., Pq}  a  P then {P1,...., Pn} a  P  

      M2. If (P1, .., Pq}  a  P, {P1, ..., Pr} a  P and if (P, P) a  P then (P1, ...., Pn) a  P 

 This property allows us to use deduction and take advantage of various types of local 

reasoning of patterns, such as modus ponens, and proceed in a step by step fashion to obtain 

complex inferences.  This situation allows for a localization which greatly simplifies the inference 

process.  In the following we shall refer to a subset of our knowledge base as a local knowledge 
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base.  The observation of the preceding is that we can make valid inferences using local 

knowledge bases. 

 

6. Protoforms 

 Recently, Zadeh introduced the idea of protoforms [10, 11, 26].  These protoforms are 

local reasoning patterns based on the structure of the component propositions.  A protoform 

consists of a collection P1, ...., Pq of premises and a consequent Q and is of the nature (P1, ...., 

Pq)  a  Q.  For the most part the justification of these protoforms is based upon application of 

conjunction (IR-1) and entailment (IR-2).  The importance of these protoforms is that if we can 

find a local knowledge base (subset) of our knowledge base consisting of propositions whose 

structure matches the premise of a protoform, then we can infer the consequent.  Furthermore, 

given properties M1 and M2 above, these protoforms can be independent parts of a complex 

deductive reasoning chain in monotonic knowledge bases. 

 In the following we shall identify some protoforms available in AR.  Unless otherwise 

indicated we assume all fuzzy subsets are normal.  We use the notation PF-K to indicate 

protoform #K.  As in the preceding the premises are identified by Pj and the consequent is 

denoted Q. 

 PF-1 provides a basic protoform for inferring information about a component variable 

from a joint relation.   

PF-1 Projection protoform 

P1: (V1, V2, ...., Vq) is H  

Q: V1 is D where D = ProjV1((V1, V2, ...., Vq) is H) 

      We recall D(x1) = Maxy[H(x1, y) where y = (x2, ...., xq) ∈ Y and Y = X2 × X3 × ... × Xq 

 PF-2 is a fundamental protoform.  It provides the basic protoform for making inferences 

from a joint relationship and companion propositions about its components.  It essentially 

involves a conjunction of the premises followed by a projection onto the relevant variable. 

PF -2  Conjunction/Projection Protoform 

P1:  V1 is B1 
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P2:  V2 is B2 

Pq:  Vq is Bq 

Pq+1:  (V1, V2, ...., Vq) is H 

Q:  Vj is D  (D = ProjVj((V1, V2, ...., Vq) is E) 

       Here E(x1, ...., xq) = Min[B1(x1) ∧  B2 (x2) ∧ .... ∧ Bq(xn) ∧ H(x1, ...., xq)].  Note if any of 

the P1, ...., Pq  are missing these still holds we can replace Bi by Xi. 

 The following protoforms can be seen as important special cases of the preceding. 

PF-3 Modus Ponens 

P1: IF V is A then U is F 

P2:  V is B 

Q:  U is D where D(y) = Poss[A|B] ∨ F(y)    (Poss[A|B]  = Maxx[A(x) ∧ B(x)])  

 This PF is a special case of PF -2.  Here P1 is represented as (V, U) is H and 

  H(x, y) = A(x) ∨ F(y) 

  E(x, y) = (A(x) ∧ B(x)) ∨ (F(y) ∧ B(x)) 

  D(y) = Maxx[E(x, y)] = Poss[A|B] ∨ F(y) 

Note 1:  If B is subnormal, Maxx[B(x)] = b then D(y) = Poss[A|B] ∨ (F(y) ∧ b) 

Note 2:  Since Cert [A|B] = 1 - Poss[A|B] then we can express  D(y)  = (1 -  Cert [A|B]) ∨ F(y) 

PF- 4 Weighted Modus Ponens 

P1:  If V is A then U is F is α certain  

P2:  V is B 

Q: U is D where D(y) = Poss[A|B] ∨ α ∨ F(y) 

 Here P1 becomes (V, U) is H is α becomes (V, U) is G where G(x, y) = H(x, y) ∨ α 

Note 3:  If α = 0 then D(y) = 1 

Note 4:  If B is subnormal, Maxx[B(x)] = b, the D(y) = Poss[A|B] ∨ (b∧ (α ∨ F(y))) 

PF-5 Modus Tollens 

P1:  If V is A then U is F 

P2:  U is C 

Q:  V is G where G(x) = A(x) ∨ Poss[F|C] 

 Here E(x, y) = (A(x) ∨ F(y)) ∧ C(y) = (A(x) ∧ C(y)) ∨ 7(F(y) ∧ C(y)) 
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 G(x) = Maxy[E(x, y)] = A(x) ∨ Poss[F|C]  

Note 5:  If Poss [F|C] = 1 then G(x) = 1 for all x and we infer no information 

Note 6:  If C is subnormal, Maxy(C(y)) = c then G(x) = (A(x) ∧ c) ∨ Poss (F|C) ≤ c 

 The above protoforms were essentially special cases of PF-2 we now turn to another 

special case of this. 

PF-6 Extension Principle 

 P1:  U = f(V) 

 P2:  V is A 

 Q:  U is f(A) 
    In this case U = f(V) is translated as (V, U) is H where H(x, y) = ∪

x∈X
{ 1

(x, f(x))
} and as 

in the preceding G(x, y) = H(x, y) ∧ A(x).  Here again D(y) = Maxx[H(x, y) ∧ A(x)] however in 
this case D(y) = Maxx[H(x, y) ∧ A(x)] = Max

x s.t. f(x) = y
[A(x)].  Hence D = f(A) 

Note: More generally if U = f(V1, ...., Vq) and Vi is Ai for all i then we infer U is f(A1, ...., Aq) 
and f(A1, ...., Aq) = D where D(y) = Max

(x1, ..., xq) s.t. f (x1, ..., xq) = y
 [A1(x1) ∧ ..... ∧ Aq(xq)] 

PF - 6b Inverse Extension 

P1:  U = f(V) 

P2:  U is B 

Q:  V is f-1(B) 
 Again,U = f(V) is translated as  (V, U) is H where H(x, y) = ∪

x∈X
{ 1

(x, f(x))
}.  However 

here G(x, y) = H(x, y) ∧ B(y) and D(x) = Maxy[H(x, y) ∧ B(y)].  In this case 
   D(x) = Max

y s.t. f-1(y) = x
 [B(y)] 

PF - 7 Fuzzy Systems Modeling 

P1:  Fuzzy Systems Model  (U, V) is (A1 ∩  B1) ∪ (A2 ∩  B2) ∪ ..... ∪  (An ∩ Bn) 

P2:  U is E 

Q:  V is G where G(y) = Maxi[(Poss[Ai|E] ∧ Bi(y))] 
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7. Knowledge Trees 

 In the following we shall describe an approach to question answering systems using the 

concept of a knowledge tree [12, 13].  As we shall see, a knowledge tree is a structure generated 

from a knowledge base in response to a query.  It can be seen as a mobilization of the knowledge 

base to address a particular task.  At a meta level it provides a plan for answering the question.  

We shall denote our knowledge base as KB and initially we assume it consists of a collection of 

monotonic propositions.  Associated with the KB is a collection of atomic variables V1, ...., Vn 

and their associated domains, X1, ...., Xn.  We view the KB as consisting of two classes of 

propositions.  The first class which we denote as D consists of all the atomic propositions, 

propositions of the form Vj is Aj where Aj is a fuzzy subset of the universe of Vj.  Among the 

propositions in D are the atomic propositions Vi is Xi, these just specify the domain of Vi.  The 

second class are those that involve joint variables, they specify relationships between variables. 

We denote the collection of these as J,  

 We shall concern ourselves here specifically with questions that ask about the value of 

some atomic variable Vi.  Our procedure for answering a question will be a two phase process.  

The first phase is a generation of a knowledge tree in response to the posing of a question.  The 

second phase is the contraction of the tree to find the value the variable queried about.  The first 

phase can be seen as generating the direction and plan for answering the question 

 Before proceeding let us clarify the tree terminology we shall use.  A node na will be 

called an ancestor of the node nb if na appears anywhere on the path from the initial node of the 

tree to nb.  In this case nb is called a decedent of na.  A node na is called the parent of node nb if 

nb emanated directly from na.  In this case nb is called the child of na.  The terms immediate 

ancestor and immediate descendent are equivalent to parent and child. 

 The following is the basic procedure for the construction of the knowledge tree in 

response to a query about an atomic variable V in the case where the KB is as described in the 

preceding   

Basic Tree Generation Algorithm 

1.  The posing of a question in the form 

                                ? V is   
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initiates the knowledge tree with a triangle of the form V  

2.  The appearance, anywhere in the knowledge tree, of a triangle labeled with a 

variable not having itself as an ancestor causes the emanation from the triangle of a 

family immediate successor nodes: 

 a.  One corresponding to each data proposition in the knowledge base subset D 

involving the label of the triangle.   A successor node corresponding to an element from 

D will be manifested by a rectangle labeled by the name of the data proposition, i.e. 

di: V is  A   

 b.  One corresponding to each proposition in J having the label of the parent 

triangle as one of its component variables.  A successor node corresponding to an 

element from J is manifested by a circle labeled by the name of the proposition, 
i.e. ij  

 c.  If there are no appropriate elements from either a or b this causes the emanation 

of a rectangle labeled by the domain of the variable, V is  X  

3.  The appearance anywhere in the knowledge tree of a triangle labeled with a variable 

having itself as an ancestor causes the emanation from that node of one successor 

node, a rectangle labeled by variables domain, V is  X  

4.  The appearance of a node corresponding to an element from J, a labeled circle, 

causes the emanation from it of a family of successor triangle nodes each labeled by a 

variable appearing in the proposition denoted by the circle 

5.  The appearance of a labeled rectangle terminates that branch of the tree. 

6.  The construction of the knowledge tree is completed when all branches terminate in 

rectangles. 

7.  The completion of the knowledge tree generation phase initiates the evaluation 

phase. 

In figure 4 we illustrate a typical knowledge tree. 
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V1 is A1(V1, V2) is B1 (V1, V3) is B2

V2

V1

V1

V1 is X1 V2 is A2 (V1, V2) is B1

V1

V1 is X1

V2

V2 is X2

V1

V1 is X1

V3

(V1, V3) is B2V3  is A3

V1

V1 is X1

V3

V3 is X3
 

Figure 4.  Typical Knowledge Tree 

 Once having completed the construction of the knowledge tree initiated by our query we 

must next apply an evaluation procedure to calculate the value of the desired variable.  The 

evaluation algorithm is based upon the rules of approximate reasoning and makes considerable 

use of the protoforms introduced earlier. 

Evaluation Algorithm 

1.  Any subtree consisting of a triangular node and a family of children which are all 

rectangular nodes can be replaced by a rectangular node whose label is V is H, 
V is  H   Here V is the label of the triangular node and H is the conjunction of the 

values of the children of this triangular node.  (It is an application of the conjunction 

protoform) 

2.  Any subtree consisting of a circular node, a relational proposition, and a family of 
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children all of which are rectangular nodes can be replaced by a rectangular node 

whose label is V1 is G where V1 is the label of the triangular node immediately 

preceding the circular node.  Typically this is accomplished by application of PF-2, the  

Conjunction/Projection Protoform.   However, more generally this may involve a two 

step process.  The first step is the application of the protoform associated with the 

circular node and its children.  The second step is an application of a projection onto V1 

of the proposition resulting from step 1. 

3.  The evaluation phase terminates when there exists one rectangular node whose label 

is the desired variable with its associated its value as the answer to the question. 

  The knowledge tree forms a useful framework for formulating the question answering 

process.  As we see it takes a knowledge base and restructures the information in it to address the 

question being asked.  We briefly point out one feature of the knowledge tree approach which, 

while we shall not currently pursue, is a very useful property.  In particular the knowledge tree 

can point us in a direction to seek additional information not in our KB that may help us in getting 

a good answer.  A simple illustration of this is the following.  Assume we are interested in finding 

the value of V1.  Assume in our KB we have a relation (V1, V2) is G.  This relation will appear as 

a decedent of our query to find V1.  Let us further assume we have no knowledge of V2.  Thus 

this branch will terminate with a rectangle V2 is  X2 .  If as a result of our working on the whole 

tree we get an answer for  \V1 that is not sufficiently informative for the user we see that this 

branch provides a potential path for improving our answer.  It is telling us if you are able to get 

better information about V2 you can possibly improve you answer for V1.   At meta level this is 

essentially pointing in some direction for improving the quality.   

 

 

8. Non-Monotonic Possibilistic Propositions 

 In order to take full advantage of the wide array of different types of information available 

we must extend our capability to allow the inclusion in the knowledge base of the types of 

commonsense knowledge that play a substantial role in human reasoning [6, 11]. Examples of this 
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are "generally it is difficult to find parking in New York City," "rainy weather usually results in 

more traffic congestions" and "a cup of coffee costs about a dollar."  This commonsense 

knowledge often is not the kind of categorical knowledge that can be simply represented by the 

type of AR proposition we have thus far considered.  It is often tentative and context dependent.  

This means it can often be involved in inferences that must be withdrawn in face of gaining 

additional knowledge.  This situation is formally referred to as non-monotonicity [27, 28].  In the 

preceding we assumed all the knowledge to be categorical, of a monotonic type, this allowed us to 

use deductive reasoning techniques.  Here we shall begin to consider the handling of types of 

propositions that can display a non–monotonicity. 

 As we noted non-monotonic propositions often come from including commonsense 

knowledge [29].  One important class of these propositions are of a default type, they provide 

values which we can associate with a variable in a situations in which our other available 

information about the variable doesn't provide a sufficiently precise value.  More generally, 

commonsense knowledge is frequently used to help in situations where we don't have enough 

direct information about the situation.  An important aspect non-monotonic propositions is that 

they are submissive to other categorical information.  For example, assume that we are interested 

in John's age and we know that he is in high school.  As commonsense knowledge we know that 

typically high school students are teenagers.  Using this piece of commonsense knowledge our 

best guess is to conclude that John is a teenager.  However assume now that we have the 

additional knowledge that John is in his thirties.  In this situation we want to the default based 

inference that John is a teenager  to defer to the categorical knowledge, that John is in his thirties.  

Implicit in this situation is some idea of a prioritization of knowledge.  In particular the default 

knowledge has a lower priority then categorical knowledge. 

 Another use of default propositions are as a simplifying tool.  Here they are used to allow 

us to make inferences without requiring us to obtain some antecedent pieces of knowledge with 

complete certainty.  In this use the possibility of some antecedent being true, it has not been 

falsified, is sufficient grounds for making an inference.  This use often acts to simplify our 

inference process.  An illustrative example of this is a rule about crossing streets: "if the light is 

red and the driver is sober then assume they will stop."  Often when using this we can't 
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realistically ascertain with complete certainty that a driver is sober, we usually settle for less 

certainty, he doesn't manifest any drunkenness.  Here we can cross without having to test each 

driver. 

 The inclusion of non-monotonic propositions can add considerable complexity to the 

reasoning process.  This complexity results from the fact that if P1 is non-monotonic and 

(P1, P2)  a  Q it may be the case that using the whole knowledge base, (P1, P2, ....., Pn), doesn't 

justify the inferring of Q.  Thus, with use of non-monotonic knowledge, all local inferences may 

not be valid.  A deeper understanding of the situation can benefit from the introduction of the 

concept of a "tail" associated with a non-monotonic proposition.  Let P = (P1, P2, ....., Pn) be our 

knowledge base and let P* be a proposition in P.  The tail TP* associated with P* is a subset of P 

consisting of the minimal number of propositions such that any proposition inferred from P* 

along with its tail is also inferable from the whole knowledge base8.  The point being that 

protoforms involving non-monotonic knowledge must include all members of its tail9.  This can 

lead to very complex protoforms that may involve many propositions and is contexturally 

dependent upon what propositions exist in the KB.  We observe that categorical propositions have 

empty tails. 

 An important class of commonsense knowledge can be represented by propositions that 

have a possibilistic component.  As we shall subsequently see this allows us to make inferences 

using the fact that some antecedent is possibly true rather the certainly true.  This softening of the 

requirements brings with it the potential that we are wrong and hence introduces non–

monotonicity.   In the following we shall look at some basic protoforms associated with 

propositions having a possibilistic component. 

 In order to get an understanding of an paradigm that plays a fundamental role in many 

protoforms associated with possibilistic non-monotonic reasoning patterns we review the classical 

                                            
8We note that this is true for  any subset that contains the tail , without introducing any other non-monotonic propositions not in 

the tail. 
 
9Here we are assuming a constant knowledge base.  In dynamic knowledge bases the addition of new knowledge  can be seen as 

opening the possibility that the original tail used in making an inference has been increased as a result of getting new information. 
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modus ponens protoform.  In modus ponens we have (P1, P2) a  Q where 

 P1:  If V is A then U is F 

 P2:  V is B 

 Q:  U is D where D(y) = (1 - Cert[A|B]) ∨ F(y) 

In this protoform we see require that we are certain that V is A to infer U is F 

Note:  It is interesting to note that we can view U is D as a kind of certainty weighted proposition: 

  U is F is α  certain  

where α = Cert[A|B] = 1 - Poss[A|B]  

 We now consider a related non-monotonic protoform  

NMPF-1: Basic Non-Monotonic Possibilistic Protoform: (P*, P2) a  Q where10  

 P*:  If V is A is possible then U is F 

 P2:  V is B 

 Q:  U is E where E(y) = (1 - Poss[A|B]) ∨ F(y) 

Here we see that we infer F if A is possible given we have B.  Note in the usual modus ponens we 

require A is certain given we have B.  Since Poss[A|B] ≥ Cert[A|B]11, then this is easier to 

satisfy. 

 A simple example illustrates this.  Let V have domain X = {a, b, c, d}.  Let A = {a} and let 

B = {a, b}.  In the case of models ponens we get D(y) = (1 - Cert[A|B]) ∨ F(y).  Since 

Cert[A|B] = 1 - Poss[A|B] = 1 - Maxx[A(x) ∧ B(x)] = 0 then D(y) = (1 - Cert[A|B]) ∨ F(y) = 1 

and we can't infer anything.  In the case of P* we get E(y) = (1 - Poss[A|B] ∨ F(y).   Since 

Poss[A|B] = Maxx[A(x) ∧ B(x)] = 1 then E(y) = F(y).  Thus here we infer U is F 

 However we also can easily illustrate the non-monotonicity associated with the use of P*.  

Assume that we get the additional piece of information P3:  V is G where G = {b, c}.  Here now 

the tail associated with P* consists of both P2 and P3.  In this case we must use (P*, P2, P3) and 

our knowledge about V is that V is H where H = G ∩ B = {b}.  In this case Poss[A|H] = 0, hence 

                                            
10We are implicitly assuming here that P2 is the tail of P* 

 
11This holds for normal sets 
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E(y) = 1 - 0 ∨ F(y) = 1, E = X,  and thus we can't infer anything. 

 A slightly more general version of the above protoform can be described.  Let P* be as in 

the preceding, If V is A is possible then U is F.  Let TP* be the tail of P*.  Assume 

TP*  a  V is H then (P*, TP*)  a  U is E where E(y) = (1 - Poss[A|H] ∨ F(y).  Let us formally 

denote this protoform. 

NMPF-1b: General Non-Monotonic Possibilistic Protoform: (P*, TP*)  a  Q where 

 P*:  If V is A is possible then U is F 

 Tp*:   a  V is H 

 Q:  U is E where E(y) = (1 - Poss[A|H]) ∨ F(y) 

An issue here is the determination of the tail of P*.  In this case, it is easily obtained by querying 

the knowledge base for the value of V.  Thus, in this case the appearance of P* in a knowledge 

tree would generate a triangle labeled by V.  This triangle would in turn generate a whole subtree 

which essentially constitutes TP*.  One fundamental difference between this situation with P* and 

that of the usual modus ponens with P1 is the following.  While the appearance of either of them 

in a knowledge tree will generate a trailing subtree initiated by a triangle labeled with V, the 

modus ponens situation will allow us to prune this subtree and still obtain a resulting inference for 

U that is a valid inference while the pruning of the subtree in the case of P* can lead to invalid 

inferences. 

 An important class of non-monotonic possibilistic protoforms relates to reasoning with 

rules that supply default or typical values.   In reasoning with these types of propositions we must 

often distinguish between what we know about a variable before we apply the proposition and 

value of the variable after we apply the protoform.  Here our prior knowledge about the variable is 

important in that it effects how a protoform works.   This knowledge is generally obtained from 

propositions with a higher priority and a stronger certainty,\ then the protoform being 

implemented.  The following protoform relates to the reasoning with default or typical values 

NMPF-2: Typical Value Protoform 

 P*:  Typically (V is A) 

 P2:  V is B (Prior Knowledge) 

 Q:  V is D where D(x) = B(x) ∧ (A(x) ∨ [1 - Poss(A|B))] 
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     In this case we represent the knowledge typically (V is A) as the possibilistic  proposition. 

If V is A is possible (with what we already know about V) then V is A 

Here what we already know is that V is B.  We see that we are taking as D the conjunction of B 

and A is credible given B this gives us 

  D = B ∩ (A is credible given B) 

 A slightly more general version of the above protoform can be described.  Let P* be as in 

the preceding, Typically (V is A)  Let TP* be the tail of P*.  Assume TP*  a  V is H then 

(P*, TP*)  a  V is E where E(x) = H(x) ∧ (A(x) ∨ (1 - Poss(A|H))).  We shall formally denote 

this protoform as NMPF-2b: Typical Value Protoform 

 Another closely related protoform is 

NMPF-3: General Typical Value Protoform 

 P*:  If V is C and U is A is possible then U is A 

 P2:  V is G 

 Tp*:  a  U is B 

 P3:  U* is B 

 Q:  U is D where  D(y) = B(x) ∧ (A(x) ∨ (1 - Cert[C|G]) ∨ (1 - Poss[A|B]) 

 We now turn to the formulation of knowledge bases having default or other types of non–

monotonic knowledge.  As we already noticed when working with these types of proposition, the 

idea of priority of proposition plays an important role.  This prioritization of propositions must be 

incorporated in the knowledge base.  We note that the ordinary categorical type knowledge has 

the highest priority. 

 In constructing our knowledge base we shall add an additional class to J and D consisting 

of our possibilistic non-monotonic propositions.  We shall denote this category as N.   

Furthermore we shall assume that the propositions in N are ordered with respect to their priority, 

there is a hierarchy of these propositions.  To avoid unnecessary complexities at this junction we 

assume this is a linear ordering.  Thus N is a collection of non-monotonic propositions where  

N =  Nq > Nq-1  > ...... > N2 > N1. 

 Here the bigger index then the higher the priority.  This hierarchy is a reflection of the fact 

that the higher priority, the sooner we want to consider that information in the reasoning process.  
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Thus, if Ni and Nj are such that i > j then we want to use Ni before we use Nj. The categorical 

propositions in D and J are assumed of higher priority then any element in N and as such should 

be considered before any element in N.  We note prior consideration in the tree evaluation process 

means an appearance lower in the knowledge tree.   

 As is the case with the elements in J and D the propositions in N have associated 

variables and generally function by enforcing constraints on these variables. 

 The inclusion of the component N in our knowledge base effects the process of generating 

the knowledge tree described earlier.  In the following we shall use a labeled trapezoid, Nk , 

to indicate the proposition Nk in N . 

 We now provide a modified version of step 2 in the tree generation process to account for 

the inclusion of non-monotonic elements in N. 

 The appearance in the knowledge tree of a triangle labeled with a variable, V , not 

having itself as an ancestor causes the emanation from the triangle of a tail consisting of . 

    i.  A serial emanation of labeled trapezoids corresponding to all propositions in N 

having V as one of its components.  This series begins with the lowest priority proposition and 

proceeds in increasing order of priority.  Furthermore, emanating from each trapezoid is a special 

dashed triangle12, V , labeled by V as well as a regular triangle labeled by any other variable 

associated with the preceding trapezoid. 

 ii.  The end of the chain of trapezoids causes the emanation from its trailing labeled dashed 

triangle of a parallel family of immediate successor nodes.  

                (a). One corresponding to each proposition in the knowledge base subset D involving 

the label of the dashed triangle.  These are labeled rectangles. 

                (b). One corresponding to each proposition in J having the label of the parent dashed 

triangle as one of its component variables.  These are labeled rectangles as described earlier.  

Finally if there are no appropriate elements from either a or b this causes the emanation of a 

                                            
12We use a dashed triangle so as to indicate that this is not a new appearance of the variable but part of the current 
tail. 
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rectangle labeled by the domain of the variable, V is  X . 

 Figure 5 we provide an illustration of a sub-branch of a knowledge tree generated using 

this revised method 

V

V

V

V

N-3

N-6

N-8

U

 
Figure 5.  Subtree from Non-monotonic Propositions 

 The evaluation step is only modified by an instruction for handling trapezoidal nodes.  We 

add the following item. 

 3. Any subtree consisting of a trapezoidal node and a family of children which are all 

rectangular nodes, can be replaced by a rectangular node whose label is determined by the 

preceding triangle and whose value is determined by the protoform associated with the 

proposition denoted by trapezoid. 

 

9. Defuzzification 

 Let V be a variable taking its value in the domain X.  In the preceding we considered the 

problem of finding the value of this variable from a knowledge base.  In answering this question 
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we allowed our answer to be a fuzzy subset.  More generally we allowed for an answer that 

contains some uncertainty.  In some cases we may be required to provide an answer that is exactly 

one value from the set X.  An example of this occurs in the widely used technology of fuzzy 

systems modeling [24, 30].  If the available knowledge about V allows us only to infer that 

V is A, where is a fuzzy subset we must provide a process to obtain a single element from X using 

this information.  Here shall refer to this step as defuzzification, Defuzz.  Other closely related 

terms for this process are choice, selection and decision. 

 The process of defuzzification has been studied in the literature [31] and there exist a large 

number of methods for implementing this operation.  In its most general sense the protoform 

associated defuzzification (choice) is an example of a non-monotonic operation.  Let us look at 

this operation.  In the following we provide a basic protoform of this operation 

Protoform: For Defuzz(V is A) 

P1:  V is A 

Q:  V = xq  where xq = Maxx∈X[A(x)]. 

 We note other forms of Defuzz are possible.  For example if X is the real line then Filev 

and Yager [32] defined the general BADD defuzzification of Vis A as V = a where a = 

xj�
xj

A(xj)r

A(xk)r�
xk

 with r > 0.  We see if r → ∝ we get the Max operator. 

 Let us see the non-monotonicity implicit in this operation.  Assume we infer V is A from 

our current knowledge base.  Using defuzzification we get DEFUZZ(V is A) ⇒V = a.  Assume 

we get more knowledge and subsequently obtain V is A.  In this case we get 

DEFUZZ(V is A) ⇒V = a.  For the defuzzification process to be monotonic we must have a = a, a 

situation which can not be guaranteed.  At a meta level, the reason for the non-monotonicity 

associated with the defuzzification operation is that in choosing a precise element we are 

assuming information, above and beyond what we have a right to do.  We are essentially using an 

operation related to the principle of maximal entropy which is non-monotonic. 

 In using our knowledge tree approach we can include these types of exact questions in the 

following manner.  We initiate our knowledge tree with a special a triangle V=
.
.  The 
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occurrence of this equal triangle causes the emanation of the Defuzz protoform as shown in 

figure 6.  The appearance of the ordinary triangle induces a process of finding V. 

V=

V

Defuzz

 
Figure 6.  Defuzzification sub tree 

 

10. Dempster-Shafer Granules for Knowledge Representation 

 Dempster-Shafer belief structures [33-35] provide a useful class of knowledge 

representation tools.  For our purposes of representing and manipulating knowledge within 

question answering systems we shall find it convenient to use a closely related framework that we 

shall refer to as Dempster-Shafer granules. or simply D-S granules.  A D-S granulate consists of 

two components.  The first is a collection of n categorical proposition of the type previously 

discussed: 

 g1:  V is A1,     g2:  V is A2, ........, gn:  V is  An 

Here V is a joint variable and Ai is a fuzzy subset on its domain X.  We shall refer to this 

collection as the body of the granule.  Thus each component in the body has a structure of a 

proposition from AR. 

 In addition, associated with a D-S granule is a mapping m that associates with each 

proposition gi in the body, a value mi such that:  1. mi ∈ [0, 1] and 2. mi�
i = 1

n
 = 1. We refer to 

this as the qualifier of the granule. 

 A very special example of a D-S granule is one in which n = 1.  In this case the body 

consists of a single proposition g1: V is A and m1 = 1.  This is the same as an ordinary 

proposition. 

 A closely related and slightly more general structure is one in which we allow the values 

mi to be fuzzy numbers mi.  These are closely related to what Zadeh calls Possibility–
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Probability  granules. [26] 

 In the following we shall describe some of the types of information that can be represented 

by D-S granules. One situation is when our knowledge about a variable has a random component.  

For example, if V is an atomic variable taking values in X = {x1, ...., xn} and we know that 

Prob(xj) = pj, we can represent it as a D–S granule with components gj: V is{xj} and mj = pj 

 More imprecise knowledge such as that the probability of subset B of X is at least α can 

be expressed using a D-S granule where g1: V is B & m1 = α,  g2: V is X & m2 = 1 - α. 

 The case where we know that the probability of B is exactly α can be represented with the 

D-S granule g1:  V is B  & m1 =  α, g2: V is B & m2 = 1 - α. 

 Quantified propositions can be expressed using D-S structures.  A simple example of this 

is "Most high income Americans live in urban areas."   Let us see how D-S granules help us 

represent this type of knowledge.  Let Vz and Uz be joint variables and let Q be a non-decreasing 

type quantifier such as at least α.  Consider the proposition 

  For Q z ∈ Z if Vz is A then Uz is B. 

                   (For most people if Income is HIGH then Residence is URBAN AREA) 

We can represent this by a collection of D-S granules such that for each z ∈Z we have  

 g1:  If Vz is A then Uz is B                           m1 = α 

 g2:  If Vz is A then Uz is X                           m2 = 1 - α 

here X is the domain of U 

 The meta protoform for manipulating D-S granules makes considerable use of the fact that 

the body of the D-S granule is made up of proposition of the type we have already dealt with. 

 Assume M1 is a D-S granule with body consisting of propositions gi for i = 1 to n and 

associated weights mi.  Let M2 be another independent D-S granule with body consisting 

propositions gj for j = 1 to n and associated weights mj.  The protoform for combining these two 

D-S granules denoted PF(M1, M2) is  

 P1:  M1 

 P2:  M2 

 Q:  M 

Here M is a D-S granule whose body consists of the nn propositions hij = PF[gi, gj] and PF[gi, gj] 
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is the protoform associated with the components.  In addition, associated with each object hij in M 

is a weight mi mj.  We emphasize the autonomy of the operations performed on the components 

of the body of the granules, the gi and gj, from the operations preformed on the qualification 

weights, the mi and mj, we refer to this as Body-Qualification autonomy, B-Q autonomy. 

 We illustrate this protoform with a simple example of modus ponens. Assume the granule 

M1 is made up of g1: V is B1 with m1 = α, and g2: V is B2 with m2 =1 - α.   Let M2 be made up 

of g1: If V is A1 then U is F with m1 = β and  g2: If V is A1 then U is X with m2 = 1 - β 

 Here the internal operation PF[gi, gj] is simply modus ponens.  We recall that this 

protoform is P1: V is B, P2: if V is A then U is F ⇒ U is D where D(y) = Poss[A|B] ∨ F(y) 

 Using this on M1 and M2 we get M such that 

h11: D11 = Poss [A1|B1] ∨ F(y)    with weight βα 

h21  D21 = Poss [A1|B2] ∨ F(y)   with weight (1 - α)β 

h12  D12 = X          with weight 1 - β 

 The process of reasoning with tree like structures that contain knowledge represented by 

D–S granules can get complex and raises some very fundamental issues notable among these are 

those related to independence and the lack of idempotency when using the same knowledge more 

then once in a tree.  Rather then superficially touching on this very complex and important topic 

we refer the reader to the work of Shafer, Shenoy and their colleagues [36, 37] on reasoning with 

D-S granules in tree like structures. 
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PART III. UNCERTAINTY MANAGEMENT FOR INTELLIGENCE 
ANALYSIS 
 

1. Introduction 

 In his report to Congress [1], David A. Kay, who led the US government's efforts to find 

evidence of Iraq's illicit weapons programs, reported that the current intelligence systems dealing 

with weapons of mass destruction are increasingly based on limited information.  In light of this 

situation, he indicated that modern intelligence analysis systems need a way for an analyst to say, 

"I don't have enough information to a make a judgment," a capacity that he felt the current 

intelligence systems do not possess. Central to attaining this capability is the ability to deal with 

uncertain and imprecise information.  We believe that fuzzy logic with its focus on uncertainty 

can help.  It has the ability to simultaneously exploit both precise formal measurements of the 

type obtained from state of the art electronic and mechanical monitoring devices as well the type 

of imprecise information obtained from human sources which is often perception based and 

expressed in linguistic terms. Here, we begin to look at the possibilities of using fuzzy logic [2] 

and related soft computing technologies to provide the tools necessary to supply this capability to 

intelligence analysts.  As we shall subsequently see, the dual measures of possibility and certainty 

[3] provide a useful way of formalizing the concept of not knowing with certainty. 

 

2. Variables and Question Answering 

 By a variable we shall mean an attribute associated with some specific object.  Thus, if V 

is a variable then V ≡  attribute (object).  John's age and the number of nuclear devices possessed 

by North Korea are examples of variables.  In the first case, the attribute is age and the object is 

John.  In the second case, the attribute is the quantity of nuclear devices and the object is North 

Korea.  Typically with a variable, we assume it has a domain, X, consisting of the set of possible 

values.  In many situations a task of great interest is the answering of some question about a 

variable.  For example, is John over 65?  Another closely related task is that of making a decision 

in which knowledge about a variable is central to the decision.  For example, a bartender deciding 
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whether to serve John a drink must ascertain that his age is at least 21. 

 We emphasize the distinction between the task of finding the value of a variable and that 

of answering a question about a variable.  Clearly, although knowing the value of a variable can 

help in answering a question, it is not always necessary.  That is, there can to some uncertainty 

and still we can answer a question about a variable with certainty. 

 In order to be able to answer a question about the value of a variable, we must draw upon 

all our sources of information about the variable.  Figure 7 illustrates this situation.  The 

information provided by these sources may be related to the variable of interest in a number of 

different ways.  It may be information directly about the value of the variable of interest, an 

observation on the age of John.  An example of this is a birth certificate.  It may be about the 

attribute without specific reference to John.  Human beings typically live no more than about 85 

years.  It may be information about the value of another attribute associated with John, "the color 

of John's hair is grey."  It may be information relating the variable of interest to other attributes or 

variables, "John is five years younger than Mary."  Furthermore, each of these pieces of 

information may have different degrees of credibility.  In addition, the information from the 

sources may be obtained from precise measurement or may be based upon perceptions and 

observations.  It may be expressed formally or in linguistic terms. 

Question Answer

Relevant Information

PROCESSING

 
Figure 7.  Task of answering a question 

 The process of answering the question about the attribute involves combining this 

information.  In some cases, this process may involve a fusing of the available information to 

obtain an effective value for the variable.  The answer to the question of interest is obtained with 

respect this fused information.  In some cases, the answer to the question may be obtained using a 

process that doesn't depend upon obtaining an effective value. 
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3. Basic Knowledge Representation Using Fuzzy Sets 

 Among the central tasks involved in providing an answer to a question is the 

representation of the relevant information in a manner that allows formal manipulation. The 

representational language should be rich enough to allow the modeling of different types of 

information.  Fuzzy subsets provide the basis for a very expressive framework for the 

representation of a wide body of knowledge.  This knowledge can be either precise or imprecise.  

It can be used to represent knowledge expressed using linguistic values.  Here, we shall briefly 

discuss this representational capability, however, we note the extensive literature on this subject 

and specifically refer the reader to the work of Zadeh under his paradigm of computing with 

words [4, 5] and the related theory of approximate reasoning [6-10]. 

 Within the framework provided by fuzzy sets knowledge about the value of a variable V is 

expressed using a statement V is A where A is a fuzzy subset of the domain X.  The use of this 

type of representation can be seen as a generalization of the idea of imposing a constraint on the 

value of V, such as saying that V lies in the subset B, when B is a crisp subset of X.  An example 

of this is saying John's age is between 25 and 35.  The use of fuzzy subsets allows for a grading of 

this concept of V lying in the set B.  Hence, the statement V is A manifests a constraint on the 

value of the variable V.  The assignment of a fuzzy subset A to the variable induces a possibility 

distribution on X such that A(x) indicates the possibility that x is the value of V. 

 These types of fuzzy assignments can arise in, although are not restricted to, situations in 

which the information about the value of the variable is initially expressed in linguistic terms.  An 

example of this would be the observation that John is middle aged.  In this case, the fuzzy subset 

is the representation of the linguistic term middle-age.  Here, the definition of the fuzzy subset A 

is such that for x ∈ X the membership grade A(x) is the compatibility of the age x with the 

concept being represented, middle-age.  We should note that while the use of a crisp subset allows 

for a representation of uncertainty of value fuzzy subsets allows for a more sophisticated 

representation.  They allow for more than just a simple distinction between those values that are 

possible and those that are impossible - it allows a grading of possibility 

 We note that, in the case where A = {x}, then the statement V is A is equivalent to saying 

that V = x.  Another special case is when A = X.  Here, the statement V is X is equivalent to 
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saying that we don't know.  If B is some crisp subset of X, then the statement V is B is equivalent 

to saying the value of V lies in B.  The situation when A = ∅ , the null set, corresponds to the case 

where we are saying our knowledge is that V is not in X.  This situation indicates a complete 

conflict with our assumption that V must take its value in X.  More generally, if A is such that 

MaxxA(x) < 1 then we have some degree of conflict with the assumption that V has X as its 

domain.  We shall say a fuzzy subset is normal if there exists at least one x ∈ X so that A(x) = 1.  

If MaxxA(x) < 1 we say A is subnormal. 

 Consider the situation where we have the knowledge that V lies in B, V is B, where B is 

the crisp subset X.  From this, we can naturally infer that V lies in E where B ⊆  Ε, here E is any 

set containing B.  Thus, knowing that John's age is between 25 and 35 allows us to infer that 

John's age is between 10 and 50.  In the fuzzy framework that generalizes to what is called the 

entailment principle [11].  This principle states that, from the knowledge that V is A, we can 

infer V is F where A ⊆ F.  We recall that for fuzzy subsets A ⊆  F if A(x) ≤ F(x) for all x. 

 Clearly, the knowledge that V is contained in [25, 35] is more informative less uncertain, 

then the knowledge that V is contained in [10, 50].  Furthermore the statement that V is 25 is even 

more informative than either of the preceding, as it contains no uncertainty.  In [12, 13, 14], we 

introduced the concept of specificity to measure the amount of information contained in a fuzzy 

proportion V is A.  Specificity is inversely related to the idea of uncertainty, the more specific the 

more certain our knowledge. 

Definition13: Assume A is a fuzzy subset over X.  Let x* be such that A(x*) = Maxx[A(x)], it is 

an element having the maximal membership grade in A.  Let A be the average membership grade 

of A over the space X - {x*}, it is the average over all elements except x*. The specificity of A, 

denoted Sp(A) is defined as Sp(A) = A(x*) - A, it is the difference between the highest 

membership grade and the average of all the other elements. 

Note 1: If more than one element attains the highest membership grade then all except one of 

                                            
13While a number of different formal definitions have been suggested we shall this one to be useful for our purposes 

as it simply captures the basic idea of the concept specificity 
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these are used to find the average. 

Note 2: We note the specificity of the statement V is A is equal to Sp(A).  Thus we use the terms 

Sp(V is A) interchangeably with Sp(A) 

 We can observe some properties of Sp(A):  

  1. It lies in unit interval. 0 ≤ Sp(A) ≤ 1. 

  2. Sp(A) = 1 iff there exists one element x*such that A(x*) = 1  and all other 

elements have A(x) = 0. 

  3. If A(x) = c for all x, then Sp(A) = 0. 

  4. If A and B are two normal fuzzy subsets, they have one element with 

membership grade 1 and A ⊇  B then Sp(B) ≥ Sp(A).  Thus containment in the case of normality 

means an increase of specificity. 

Note:  Essentially specificity measures the degree to which V is A points to one and only one 

element as the value of V. 

 As we shall subsequently see, the measure of specificity can play an important role in the 

processing of information.  Consider the statement V is A where A is a normal fuzzy subset, that 

is there exists at least one element that has full possibility of having the value of V.  We earlier 

noted that if B1 is such that B1 ⊂  A as well as remaining normal then V is B1 provides more 

information about the value of V than the original statement V is A.  Essentially in this case we 

introduced some degree of clarity, we reduced the uncertainty by reducing the possibility of some 

elements while still leaving the possibility of finding a solution.  On the other hand, if B2 ⊃ A 

then V is B2 provides less information than V is A.  In this case, we have reduced our certainty 

because we have added more possibilities.  A third situation is where we have V is B3 but with 

B3 ⊂A but with B3 subnormal Maxx[B3(x)] < 1. We don't have a solution completely compatible 

with the assumption that V lies in X.  In this case, we can possibly have less information than the 

original statement V is A, Sp(B3) ≤ Sp(A).  More generally, a reduction of specificity (certainty) 

in our knowledge can come about from two sources, one being increased possibility and the other 

being an increase in conflict with the assumption that its value lies in the given domain? 
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4. On the Measures of Possibility and Certainty 

 As we earlier noted, a task of great interest is the answering of a question about some 

variable.  Here, we shall concern ourselves with this issue when our knowledge about the variable 

as well as the question is represented using the preceding representation.  Given the knowledge 

that V is A our task is the determination of the validity of the statement V is B. 

 In order to build our intuition, we shall initially consider the case in which the sets A and 

B are crisp sets.  There are two situations regarding our knowledge of A.  In the first, we have no 

uncertainty regarding our knowledge of V, V = x1, here A = {x1}.  In this situation, we can very 

clearly answer our question about the truth of the statement V is B.  If x1 ∈ B then the answer is 

yes,  if x1 ∉ B then the answer is no.  This exact information with respect to the value of V leads 

to precise answers. 

 The second case is where A is not a singleton, there exists some uncertainty about the 

value of V.  This is the more typical situation, as noted by Kay [1], in intelligence analysis.  The 

uncertainty associated with the knowledge that V is A makes the clear determination of whether 

another statement V is B is true or false not always attainable.  Using figure 8 can help us 

understand the situation when A is uncertain. 

 

A B

Case 1

A
B

Case 2

A

Case 3

B

 
Figure 8. Different relations between knowledge and question 

 We see in case 1 knowing that V is A assures us that V is B is valid.  In case 2, knowing 

that V is A assures us that V is B is not true.  Finally, in case 3, we can't tell.  Thus we observe 
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from this crisp environment that we have the following rules regarding the determination of truth 

of the statement V is  B given V  is A:  

  If A ⊆ B then the answer is yes 

  If A ∩  B = ∅  then the answer is no 

  If A ∩  B ≠ ∅ and A ⊄  B then the answer is I don't know 

 Thus the attainment of a clear answer to questions in the face of uncertainty in our 

knowledge is not always attainable.  We note this situation holds even in the special case when B 

is a singleton.  We see that asking if V = 30 if we only know that V ∈ [25, 40] can't be answered 

yes or no, the appropriate answer is I don't know. 

 In the fuzzy set environment more sophisticated tools are needed to address this problem.  

Two measures have been introduced by Zadeh [3] to help.  These are the measures of possibility 

and certainty.  We note that Dubois and Prade [15, 16] refer to the measure of certainty as the 

measure of necessity.  In the following, we shall, unless otherwise stated, assume A and B are 

normal 

 The possibility that V is B given V is A is denoted by Poss[V is B/V is A] and is defined 

as Poss[V is B / V is A] = Maxx[D(x)] where D(x) = Min[A(x), B(x)].  Thus 

  Poss[V is B / V is A] = Maxx[A(x) ∧ B(x)] 

Since D = A ∩  B, we see that Poss[V is B / V is A] is the maximum degree of intersection 

between A and B. 

 The second measure introduced by Zadeh is the measure of certainty.  We define this as 

  Cert[V is B / V is A] = 1 - Poss[V is not B / V is A]  = 1 - Maxx[A(x) ∧ B(x)] 

With some manipulation we attain 

  Cert[V is B / V is A] = Minx[A(x) ∨ B(x)] 

We observe that Cert[V is B / V is A] is indicating the degree to which A is contained in B.  That 

is if A is contained in B the knowledge that V is in A assures us that it is in B. 

 These measures of possibility and certainty can be seen as respectively providing upper 

and lower (optimistic and pessimistic) bounds, on the answer to the question of whether V is B is 

true given we know that V is A. 

 We note that if A is a normal fuzzy subset, there exists an x* such that A(x*) = 1, then 
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Poss[V is B / V is A] ≥ B(x*) and Cert[V is B / V is A] ≤ B(x*).  Thus we see when A is normal, 

we have Cert[V is B/V is A] ≤ Poss[V is B / V is A]. 

 Let us look at these measures for some special cases of A and B. We first consider the case 

where A and B are crisp.  In this case, Cert[B/A] and Poss[B/A] must be either one or zero.  We 

see that if Cert[B/A] = 1 then Poss[B/A] = 1 and this corresponds to the case where V is B is true.  

If Poss[B/A] = 0 then Cert[B/A] = 0 and we know that V is B is false.  If Cert[B/A] = 0 while 

Poss[B/A] = 1 then we are in the situation in which the answer is unknown. 

 Consider the situation where B is a crisp subset and A can be fuzzy.  He we have that 

  Poss[V is B / V is A] = Maxx ∈ B[A(x)] 

  Cert[V is B / V is A] = Minx ∉ B[A(x)] = 1 - Maxx ∉ B[A(x)] 

 An important special case of this is where B = {x*}, here we are interested in determining 

whether V is equal to some particular value.  In this case we see that Poss[V is B / V is A] = 

A(x*) and Cert[V is B / V is A] = Minx ≠ x*[A(x)] = 1 - Maxx ≠ x*[A(x)].  The certainty is the 

negation of largest possibility of value not equal to x*.  We also observe that if A(x*) ≠ 1 then we 

must have Cert[V is x* / V is A] = 0.  This follows since with normal sets there exists some 

element x1 ≠ x*  with A(x1) = 1 and hence  1 - Maxx ≠ x*[A(x)]  = 0. 

 We also observe in the case where X = {x1, x2}, if we ask is V = x1, we see that 

Cert[V is x1 / V is A] = 1 - A(x2).  It is simply the negation of the possibility of the other element. 

 Consider now the special case where A is a crisp set.  Here 

  Poss[V is B / V is A] = Maxx ∈ A[B(x)] 

  Cert[V is B / V is A] =  Minx[A(x) ∨ B(x)] = Minx ∈ A[B(x)]. 

If additionally we assume that A = {x1}, the value of V is exactly known, then 

 Poss[V is B / V is A]  = B(x1) and Cert[V is B / V is A] = B(x1) 

then B(x1) is the validity of the statement that V is B. 

 Some clarification may be useful here.  What we have shown is that generally when our 

information about a variable, V is A, has some uncertainty the answer to any question about the 

truth of the statement V is B lies in some interval.  Thus if A is not a singleton the truth of V is B 

lies in the interval [l, u] where l is the certainty of V is B and u is the possibility that V is B.  Here 

[l, u] is a subset of the unit interval.  On the other hand if A is a singleton then the truth of V is B 



 

 

76 
 
 

is a precise value b,  in the unit interval.  Additionally in the case when A is a singleton we have 

that B is a crisp set then b equals one or zero.  The important point here is that there are two 

manifestations.  One being as a result of our lack of certainty regarding the knowledge of A, it is 

granular and it is not a singleton, generally this results in an interval for our truth value.  The 

second issue is related to a lack of crispness.  The sets involved are fuzzy, this generally 

introduces aspects of multi-values logic, l and b are not necessarily one or zero but can be 

anywhere in unit interval.  

 In cases where the decision process requires a more precise determination of the validity 

of the proposition V is B then provided by the interval [u, l] we must provide some means around 

this difficulty.  However, we must emphasize that the actual processing of the information about 

the variable V has left us with some uncertainty.  In some cases, we may be able to draw upon 

techniques from decision-making under uncertainty [17] to help make decisions in this kind of 

environment.  First we want to make a clear distinction between the analyst, such as an 

intelligence analyst, and what we shall call the executive.  It is the executive who makes the 

decision using as some of his input the information provided by the analyst.  While it is not our 

purpose here to go into great detail about the executive task of decision making, since we are 

more interested in the analysis task, we shall make a few comments.  

 In making a decision, such as whether we should preemptively strike an adversary, in 

addition to the information provided by the analyst about the state of V which may be uncertain, 

such whether they have weapons of mass destruction, an executive generally draws upon two 

other types of information [18].  The first type of information is related to the costs or payoffs 

associated with the choice of an action and the possible states of the uncertain variable V.  

Formally this is often expressed using a payoff matrix.  The second type of information is related 

to what we call the decision makers' attitudinal character [19].  This component of the decision 

process has an extremely subjective nature.  It is here people can have strong differences of 

opinion, which are purely value and preference driven.  Thus one executive in the face of an 

uncertainty regarding the relevant variable may decide to act in a way that defends against the 

worst possibility, the so-called Max-Min decision maker [20].  Given an appropriate use of this 

with respect to the available knowledge of the possible outcomes this type of decision cannot be 
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said to be right or wrong.  The point we want to make here is that uncertainty in our knowledge 

provides space for the inclusion of subjective choices by the executive making the decision.  A 

simple example of this may involve preparing for a party in which we are not sure whether 20 or 

500 people are coming. Clearly if we prepare for 500 and only 20 show up then we wasted a lot of 

money.  On the other hand if we prepare for 20 and 500 show up we have some embarrassment.  

The choice of how many people to prepare for is based on the subjective preferences of the party 

giver, the executive, with regard to being embarrassed or wasting money, there is no right or 

wrong decision. 

 In the preceding, we assumed normality with respect to all the sets involved; all sets were 

assumed to have at least one element with a membership grade 1.  Here, we shall make some 

comments about the situation with respect to sub-normality, Maxx[A(x)] < 1.  First, we note sub–

normality is generally a reflection of some conflict.  Sub-normality usually arises from the 

combination of information from different sources when there is some conflict between the 

observations of the sources.  A second way it can arise is when the information provided by an 

individual source is in conflict with the assumption about the domain of a variable.  This type of 

situation occurs less frequently.  Thus we shall assume that our primary information supplied by 

the individual sources is normal. 

 In formal reasoning systems, based on logic, the appearance of conflicting statements 

results in a situation in which we can infer anything, we conclude that everything is true.  Our 

system has a similar  property.  Assume V is A and A = Ø  then for any statement V is B we have 

Cert[V is B / V is A] = Minx[Ã(x)] ∨ B(x)] = 1.  Thus, in the face of complete conflict, 

everything is certain.  On the other hand, with A = Ø, Poss[V is B / V is A]  = Max[A(x) ∧ B(x)] 

= 0.  Thus nothing is possible but everything is certain.  In order to avoid this difficulty of having 

the certainty greater then the possibility we shall use as our definition of certainty  

  Cert[V is B / V is A] = (Minx[Ã(x)] ∨ B(x)]) ∧ (Maxx[A(x)]) 

If A is normal, this just is the definition for certainty we previously used, Cert[V is B/V is A] = 

Minx[Ã(x)] ∨ B(x)].   If A = ∅  we get  Cert[V is B / V is A]  = 0.  More generally using this 

definition we always get Cert[V is B / V is A] ≤ Poss[V is B / V is A] 

 We make one further comment with respect to normality.  Previously, we defined the 
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entailment principle as saying from V is A we can infer V is B where A ⊆  B.  This must be 

modified to say that B must satisfy the Maxx[B(x)] ≤ Maxx[A(x)].  Thus if A is normal no 

additional restriction exists on B.  On the other hand if Maxx[A(x)] = a then any statement V is B 

inferred from this must satisfy both  A ⊆  B  and Maxx[B(x)] ≤ a.  The inferred set B can't be 

more possible then the original set A 

 

5. Hedging on our Data 

 In the preceding, we introduced V is A as a structure for representing uncertain knowledge 

where A is a fuzzy subset of the domain X of V.  We indicated that this generalized the idea of 

knowing that V lies in some subset.  More generally this formulation imposes some constraint on 

the value that V can assume.  One question  we considered was determining whether the 

proposition V is x* is valid given the knowledge V is A.  We showed that, with uncertainty in our 

knowledge about V, the best we could do was to put some bounds on the truth of the hypothesis 

that V is x*.   In particular Poss[V is x* / V is A] = A(x*) provided an upper bound and Cert[V is 

x* / V is A] = Minx ≠ x*[A(x)] = 1 - Maxx ≠ x*[A(x)] provided a lower bound.  If we let B = 

{x*} then not x* is B = X – {x*} and we see that Cert[V is x* / V is A] = 1 - Poss[V is not x* / V 

is A]. 

 We now consider the situation where we want to hedge on the knowledge that V is A.  We 

let α ∈ [0, 1] indicate the degree of confidence we attribute to the proposition V is A, that is our 

knowledge V is A is α− certain.  In [21] it was suggested that one can express this hedged 

knowledge as a proposition V is F where F(x) = Max[A(x), α.] = A(x) ∨ α.  Since α. = 1 − α we 

see if α = 1 then F(x) = A(x) and we get our original unhedged proposition.  If α = 0 then 

α  = 1  and F(x) = 1 for all x.  Here, our statement V is F effectively carries no information.   

Essentially this hedging loosens the constraint on the variable V. 

 In the following we shall let A* denote the fuzzy set such that A*(x) = 1 if x = x* and 

A*(x) = 0 if x ≠ x*.   

 Let us see what happens to our measures of possibility and certainty in this hedged 

situation 
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Poss[V is x* / V is A is α−cert] = Maxx[(A(x) ∨ α])∧ A*(x)] = A(x*) ∨ α 

In the case of certainty we have 

Cert[V is x* / V is A is α−cert] = 1 - Maxx ≠ x*[F(x)] = Minx ≠ x*[F(x)]. 

Since F(x) = α ∨ A(x) then Cert[V is x* / V is A is α−cert] = 1 - Maxx ≠ x*[α ∨ A(x)] = 1 –

 α ∨ Maxx ≠ x[A(x)] = α ∧ Minx ≠ x*[A(x)] = Min[α, Minx ≠ x*[A(x)]].  More intuitively we 

see  that Cert[V is x* / V is A is α−cert]  = Min[α, Cert[V is x* / V is A]], it is the smaller of α 

and the certainty of the unhedged situation. 

 In anticipation of what we shall do in the following, we shall refer to these as optimistic 

and pessimistic measures 

 Opt(V is x* / V is A is α−cert) = Poss[V is x* / V is A is α−cert] = A(x*) ∨ α 

 Pess(V is x* / V is A is α−cert) = Cert[V is x* / V is A is α−cert] 

                       = α ∧ Minx = x*[A(x)] 

                                                                     = α ∧ (1 - Poss[V is not x* / V is A]) 

 We now consider an alternative method for representing a certainty quantified statement 

using the Dempster-Shafer belief structure [22].  Here we represent the statement V is A is α-cert 

by the proposition V is m where m is a D-S belief structure with two focal elements, B1 = A and 

B2 = X having m(B1) = α and m(B2) = 1 - α .  In this framework, we use the plausibility and 

belief measure to obtain our optimistic and pessimistic bounds on the validity  of the statement V 

is x*.  We recall the plausibility and belief measures are respectively the expected possibility and 

expected certainty. 

        Pl[V is x* / V is m] = �
i = 1

2
m(Bi) Poss[V is x* / V is Bi] 

         = α Poss[V is x* / V is A] + α Poss[V is x* / V is X] 

         = α A(x*) + α = 1 - α A(x*) 

        Bel[V is x* / V is m] = �
i = 1

2
m(Bi)Cert[V is x* / V is Bi] 

           = α Cert[V is x* / V is A] + α Cert [V is x* / V is X] 

           = α Minx ≠ x*[A(x)] + α 0 = α Minx ≠ x*[A(x)]  

 We observe that the more generally pessimistic measures can be generalized using a t-

norm [23].  Thus if T is any t-norm then  
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   Pess[V is x* / V is A is α−cert] = T[α, Minx ≠ x*[A(x)]. 

The optimistic measure can be generalized using a t-conorm [23].  Thus if S is any t-conorm then  

   Opt[V is x* / V is A is α−cert] = S(α, A(x*)] 

We shall not here investigate the issues involved of selecting among these possibilities  

 

6. Multi-Source Information Fusion 

 We now turn to the issue of aggregation of information from multiple sources, Multi-

Source Information Fusion (M-SIF). 

 If V is A and V is B are two pieces of information then their conjunction (fusion) is V is D 

where D = A ∩ B, that is D(x) = Min[A(x), B(x)].  More generally, if V is Ai, for i = 1 to q, are a 

collection of propositions14 from multiple sources then their conjunction is V is D where D = 

∩
i = 1

q
Ai here D(x) = Mini[Ai(x)].  We observe one fundamental feature of this conjunction 

process.  For all x, D(x) ≤ Ai(x) that is D ⊆Ai.  More generally, if D = ∩
i  = 1

q
Ai and E = D ∩  Aq 

+ 1 then E ⊆ D, E(x) ≤ D(x) for all x.  Thus we see the more information we get the smaller the 

fuzzy subsets. 

 In using multiple sources of information, usually, our objective is to increase the amount 

of information we have about the variable of interest.  We desire to increase the specificity.  We 

observe that if D, ∩
i  = 1

q
Ai, is normal then Sp(D) ≥ Sp(Ai) for any i and we have we have gained 

information.  Thus, here if the information is not conflicting then fusing the information supplied 

by the multiple sources is a process, which can't decrease the information we have from any of the 

individual sources.  Normally, in this case, D usually is more informative than any of the 

individual sources 

 However, if some of the source information are conflicting, this may result in a situation in 

which D is subnormal, MaxxD(x) ≤ 1.  In this case, the fusion of the sources may provide us with 

                                            
14Here unless otherwise stared we shall assume the Ai are normal, have at least one element with membership grade 

1 
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a situation in which we are more confused and our informativeness, specificity, has decreased. 

Generally it is difficult dealing with situations in which we have conflicting source information.  

One approach to addressing this situation is not to use all the information.  That is, we selectively 

choose which information to use and fuse.  This requires adjudicating between the information 

supplied by the different sources.  Often the choice of the appropriate manner of adjudication 

requires the use of subjective considerations on the part of the person ultimately responsible for 

fusing the information.  In the following, we shall suggest one approach to addressing this 

problem.  We should note that other approaches are possible.   

 As we shall subsequently see, this process generally involves a tradeoff between selecting 

a subset of the available information that is not conflicting and yet large enough to provide a 

credible fusion of the available information.  The technique we shall suggest will make use of the 

concept a credibility measure to help in this process. 

 Let Pi denote V is Ai, a be piece of data about the variable V.  We refer to the collection of 

these as P = {P1, ..., Pq}.  We associate with P a measure µ: 2P → [0, 1] such that for each subset 

B of P, µ(B) indicates the credibility of using as our fused knowledge the conjunction of the data 

in B.  We shall call µ the credibility measure. We can associate with µ some basic properties:  

µ(∅) = 0 and µ(P) = 1.  Additionally µ must be monotonic, if B1 ⊆   B2 then µ(B2) ≥ µ(B1). 

 Assume B is a subset of P.  Let DB = ∩
Pi ∈ B

Ai, it is the fusion of the knowledge in B.  

We observe using the subset B leads to the statement V is DB.  However, any statement obtained 

by using only the information in B only has a credibility of µ(B). 

 In order to determine the quality of the knowledge obtained by using the subset B we must 

consider two criteria.  One criteria is that the knowledge provided by fusing the data in B is 

informative and the other criteria is that B is credible.  The degree of satisfaction to the criteria of 

informativeness, Inf(B), can be obtained using the measure of specificity, thus Inf(B) = Sp(DB).  
We recall Sp(DB) = DB(x*) – Ave

X-{x*}
 (DB) where x* is any element having maximal membership 

grade in DB.   The credibility of using the subset B, Cred(B), can be measured by µ(B).  Since our 

measure of quality is an anding of these criteria we can define the measure of the quality of the 

result obtained using the subset B as Qual(B) = Inf(B) Cred(B), thus Qual(B) = Sp(DB) µ(B). 
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 An interesting alternative view of our measure Qual(B) can be obtained.  In the preceding, 

we indicated that a statement such as V is DB is µ(B)-cert as being translated into V is F where 

F(x) = DB(x) ∨ (1 - µ(B)).   We note that ∨ is an example of a t-conorm.  It is the Max t-conorm, 

S(a, b) = Max(a, b) = a ∨ b.  Let us consider the use of another t-conorm.  A particularly 

interesting one is S(a, b) = a + b - ab, this is called the bounded sum [24].  If we use this instead of 

the Max we get FB(x) = DB(x) + (1 - µ(B)) - (DB(x)(1 - µ(B))). After a little algebra we get  

   FB(x) = (1 - µ(B)) + µ(B)DB(x) 

We note that it is monotonic with respect to DB(x), if DB(x1) ≥ DB(x2) then FB(x1) ≥ FB(x2). 
 Consider now the measure of specificity.  We first recall Sp(DB) = DB(x*) – Ave

X-{x*}
 (DB)  

Consider now Sp(FB) here since x* still provides the largest membership in FB then  
  Sp(FB) = FB(x*) – Ave

X-{x*}
 (FB) 

  Sp(FB) = ((1 - µ(B)) + µ(B)DB(x*)) - Ave
x ≠ x*

 [(1 - µ(B)) + µ(B)DB(x)] 

The nature of Ave is such that  

  Ave
x ≠ x*

 [(1 - µ(B)) + µ(B)DB(x)] = (1 - µ(B)) + µ(B)
Ave

X-{x*}(DB) 

Thus here  
  Sp(FB) = ((1 - µ(B)) + µ(B)DB(x*)) - (1 - µ(B)) - µ(B)

 
Ave

X-{x*}
 (DB) 

  Sp(FB) = µ(B) (DB(x*) – Ave
X-{x*}

 (DB)) 

  Sp(FB) = αSp(DB) 

 Thus using this definition for certainty qualification leads to a very nice result for the 

relationship between the specificities of DB and FB.  This can be of great use in finding the best 

solution to the fusion problem. 

 We make some observations about this process of multi source fusion.  First, observe that 

if the whole collection of data P is such that DP is normal then for all B since DP ⊆ DB then DB 

is also normal.  Hence, in this case, Sp( DP) ≥ Sp(DB).  Furthermore, since µ(P) = 1 ≥ µ(DB) then 

   Qual(P) = Sp( DP) ≥ µ(DB) Sp(DB) ≥ Qual(B). 

Thus, in the case where the fusion of the data from all the sources doesn't induce any conflict the 

most informative thing to do is to use fusion of all the data in P. 

 More generally ,we make the following observation.   
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Observation: If B1 is a subset of P such that DB1 is normal then for all subsets B2 of P such that 

B2 ⊂ B1 then Qual(B1) ≥ Qual(B2). 

Justification: Since B2 ⊆ B1 then DB1 ⊆ DB2 and µ(B1) ≥ µ(B2).  Since both are normal it 

follows that Sp(DB1) ≥ Sp(DB1) and hence Qual(B1) ≥ Qual(B2). 

Definition: We shall call a subset B where DB is a normal a non-conflicting subset.  Furthermore, 

we call a subset B maximally non-conflicting if B is non-conflicting and the addition of any 

other piece of data to B results in sub-normal fusion. 

Observation: Any subset B of data containing a maximally non-conflicting subset can't provide 

the best fusion. 

 We shall now consider some examples of the credibility measure.  One special class of 

credibility measure are those we call cardinality based measures.  For these measures no 

distinction is made between the credibility of the different pieces of data, µ(B) just depends on 

how many pieces of data are in B, the cardinality of B.  We can define a cardinality-based 

measure using a function  h:[0, 1] →  [0, 1] that satisfies h(0) = 0, h(1) = 1 and is monotonic, 

h(r1) ≥ h(r2) if r1 > r2.  Using h we 

can define µ(B) = h(|B|
|P |

).  These types of functions are often obtained as a representation of some 

linguistic quantifier such as most, "at least about half". 

 Another class of credibility measures are those that are completely additive.  Here we 

associate with each piece of data Pi, a value αi ∈ [0, 1] and assume �
i = 1

q
αi = 1.  In this case 

µ(B) = �
j ∈ B

αj. 

  Let Gk, k = 1 to g, be a collection of subsets of P that provides a partition of P  One 

example of credibility measure µ using this is one where µ(B) = 1 if B contains at least piece of 

data from each of the Gk and µ(B) = 0 otherwise.  Closely related to this is a measure in which we 

associate with each Gk a nonnegative value gk and define µ(B) = gk�
k = 1

g
|B ∩ Gk

|B|
.  Here we also 

assume the gk sum to one. 

 Another type credibility measure is one that contains a crucial piece of data.  We say that 

Pj is crucial if µ(B) = 0 if Pj ∉ B. 
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 Another interesting example of credibility measure is the following.  Let B1 be a subset of 

P.  Consider a measure such that µ(B) = 0 if B1 ∩ B ≠   ∅  and B1 ⊆ B.  This measure, which we 

call a balanced measure, requires that if we include any data from  B1 in our fusion we must use 

all the data in B1. 

 Let us summarize the procedure we suggested for providing a user with quality fusion of 

the data in the collection P.  The first step is to calculate the subset B* of P with the highest 

quality conjunction of its component data.  That is we find B* such that Qual(B*) = 
[Qual(B)]Max

B ⊆ P
 where Qual(B) = Sp(DB) µ(B).  Having found this subset B* we indicate to the 

client that V is DB* is the result of our multi-source data fusion and that the credibility of this 

information is µ(B*). 

 

7. Multiple Fused Values from Multi-Source Data 
 In some situations, the presentation of a single fused value may not be sufficient or 

appropriate.  Here we shall suggest a process that will allow us to provide multiple fused values 

over the data set P. 

 Our point of departure is again a collection of multi-source data P = {P1, ..., Pq}.  Each 

piece of data Pj being of the form V is Aj where Aj is a fuzzy subset of the domain of V, X.  In 

addition, we have a credibility measure µ: 2P →   [0, 1] where µ(B) is the degree credibility 

assigned to a fusion using the data in the subset B of P. 

 In the preceding, we defined a process for obtaining an optimal subset B1 and which 

provided a fused value V is DB1 with credibility µ(B1).  Here DB1 = Aj∩
j, Pj ∈ B1

.  This approach 

finds the subset of data B1 such that that Qual(B1) = µ(B1) Sp(DB1) = Max
B1 ⊆ P

 [µ(B) Sp(DB)].  

We shall refer to this process as Qual-Fuse(P, µ).  Thus Qual-Fuse(P, µ) returns B1 which 

enables the determination of DB1 and µ(B1). 

 In the following, we shall suggest a procedure which allows the for generation of multiple 

fusions from the pair (P, µ).  For notational convenience in the following we shall find it 

convenient to denote the fuzzy subsets Aj as Aj
1, thus our data is still P = {P1, ..., Pq} where Pj 
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corresponds to the observation  V is Aj
1.  µ is still a credibility measure over P. 

 The basic algorithm of our procedure is as follows. 

1.  Initialize our system with P, µ and set i = 1. 
2.  Apply Qual-Fuse(P, µ) this returns B1 and DB1 and V is DB1 with credibility µ(B1). 

3. Revise each of the Pj to V is Aj
2 where Aj

2 = Aj
1 - DB1 .That is we remove the subset DB1 from 

the subset Aj
1   We recall Aj

1 - DB1 = Aj
1Aj

1 ∩ DB1 and therefore Aj
2 (x) = Min[Aj

1 (x), 1 - DB1(x)] 

4.  Set i = 2 

5.  Let P = [P1, ..., P1] with Pj such that Vj is Aj
i 

6.  Apply Qual-Fuse(P, µ).   This returns Bi and the statement V is DBi with credibility µ(Bi).  

Here DBi = Aj
i∩

j, Pj ∈ Bi

 

7.  Additional fusion desired ?  No - stop, Yes - continue 

8.  Set i = i + 1 
9.  Calculate Aj

i = Aj
i-1 - DBi - 1 

10.  Go to step 5. 

 The final result of this process is a collection of fused values of the form  
  V is DB1 with credibility µ(B1) 

  V is DB2 with credibility µ(B2) 

 
  V is DBk with credibility µ(Bk) 

 The key idea we  suggested here is the removal of the already presented fused value from 

the data remaining to be used to fuse.  This is very much in the spirit of the Mountain Clustering 
method [25, 26].  This removal process tends to result in a situation where the DBj are disjoint . 

 An interesting issue, one which we shall not investigate in detail here, is when to stop the 

process of providing additional fusions.  In its simplest form, this can be just based on an input 

from the user, for example how fused values they want.  A more computationally based approach 

could be one in which we stop when the quality of the next proposed fusion falls below some 

level.   
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8. Fusing Probabilistic and Possibilistic Data 

 An important issue in the field of data fusion concerns itself with the combination of two 

pieces of information where one is expressed in terms of a fuzzy subset (possibility distribution) 

and the other is expressed in terms of a probability distribution [27, 28].  Here we shall introduce 

some ideas related to this problem. 

 Let G be an attribute that is associated with some class of objects Z.  Let X be the domain 

in which this attribute takes its value.  Our interest here is on the determination of the value of the 

attribute G for some specific entity, z*, from this class.  Thus we are interested in the 
determination of the value of variable G(z*).  We shall denote this variable as G*. 

 Consider a piece of data about G* such a G* is A where is a fuzzy subset of X.  Let's look 

at this data more carefully.  First, we see it is directly about the variable of interest.  That is, it is a 

statement about the attribute for the object of interest.  Often, this information is a result of some 

linguistically expressed observation such as "The bomb thrower was young."  As noted by Zadeh 
[29] this statement puts some constraint on the possible values of the variable G*.  It generalizes 

the idea of having a more crisp statement such as "The age of the bomb thrower was between 18 

and 25."  It of course reflects some uncertainty with respect to the sources observation.  In the 

situation in which A is assumed normal, this uncertainty can be measured by the cardinality 

subset A, Σx A(x).  In the case where we must deal with subnormality a more sophisticated 

measure such as Un(A) = 1 - Sp(A) = 1 - (Max(A) - Ave(A)) should be used.  We see if Max(A) = 

1 then Un(A) = Ave(A) which is essentially Σx A(x). 

 Let us now turn to the situation in which we have additional probabilistic information 

consisting of a probability distribution P over the space X where P(xi) is the probability associated 

with the attribute value xi.  In order to find a basis for fusing these two pieces of information, the 

possibility distribution A and the probability distribution P, we shall take advantage of a view 

proposed by Coletti and Scozzafava [30].  In [30] the authors suggested that an element's 

membership grade in a fuzzy, A(xi), can be viewed as the conditional probability of A given xi, 

P(A/xi) = A(xi).  Having this allows us to use Bayes' rule to generate the fused information.  Let 

P(x/A, P) indicate the probability of x given are two pieces of knowledge.  In particular, P(x/A, P) 



 

 

87 
 
 

= P(A / x)
P(A)

  P(x).  Using P(A/x) = A(x) we have P(x/A, P) = A(x)
P(A)

 P(x).  Furthermore, since P(A) = 

�
i = 1

n
P(A

xi
) P(xi) then P(A) can be expressed �

i = 1

n
A(xi) P(xi).  Using this, we get P(x/A, P) = 

A(x) P(x)
ΣiA(xi) ⋅ P(xi)

.  At times we shall find it convenient to express this as P(x/A, P) = A(x) 

ΣiA(xi) ⋅ 
P(xi)
P(x)

 

 Thus the result of fusing these two pieces of data is a probability distribution with respect 
to the value of G*.  Using the notation suggested by Zadeh in [29] we can express this as G* isp 

R where R indicates a probability distribution on X such that P(x/A, P), as defined above, is the 
probability that G* assumes the value x.  The fact that this is the case is not surprising since the 

knowledge in the possibility distribution is actually saying that the value of the variable G* lies in 

a set, A.  So we are actually finding the probability of x conditioned on the knowledge that  G* 

lies in a set. 

 Let us look at this for some special cases to see if it is consistent with our intuition.  First, 

consider the case where P(xi) = 1n.  Here, the probability distribution is essentially providing no 

information.  In this case, we have  P(xi)
P(x)

 = 1 for all xi  and hence P(x/A, P) = A(x)

A(xi)�
i = 1

n .  Thus 

here we obtain P(x/A, P) as simply a normalization of the possible distribution. 

 Consider now the case in which A(xi) = 1 for all xi.  Here the possible distribution is 

providing no information.  In the case P(x/A, P) = P(x)

ΣiP(xi)
 = P(x).  We get back the original 

probability distribution. 

 Consider the case where A corresponds to some crisp subset B of X.  That is A(xi) = 1 for 

xi ∈ B.  In this case P(x/A, P) = P(x)

�
xi∈B

P(xi)
.  This is the classic case of conditional probability. 

 One issue that must be addressed is conflicting information.  Consider the case where we 

have A(x1) = 1 and A(xj) = 0 for all other xj and where P(x1) = 0.  In this case, we see that 

P(xi)A(xi) = 0 for all xi and our aggregation leads to a kind of indeterminism.  Here, we 

essentially must decide, do we believe the possibility distribution which says the answer is 

definitely x1 or do we believe the probability distribution which says the answer is definitely not 

xi. 
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 Another form of conflict can be seen in the following case.  Let A = { 1
x1

,  0.1
x2

,  0
x3

} and let 

the probabilistic information be such that P(x1) = 0, P(x2) = 0.1 and P(x3) = 0.9.  In this case we 

obtain P(x1/A, P) = 0,P(x2/A, P) = 1 and P(x3/A, P) = 0.  This may be somewhat disturbing.  

Here while both pieces of information lend little support to x2 their combination leads to its 

strong support 

 In order to address this issue of conflict we must first consider the context in which we 

obtain probabilistic information.  We can envision two situations when we obtain probabilistic 

information.  One of these is in a frequent  spirit and the other is of a subjective kind. 

 One situation where we have probabilistic information is where the probability distribution 

is a reflection of some observation about the attribute G over the objects in the class Z.  Thus here 

P(xj) is the probability that an object in Z has value for attribute G equal to xj.  For example, if xj 

= 26, then P(26) is the probability that "a" bomb thrower is 26.  The point we want to emphasize 

here is that this information is not directly about the entity of interest z*.  It is not information 
about our variable of interest Gx*, G(x*).  Although it is useful and valuable information, it is not 

directly about the object of interest.  The important observation here is that the information 

contained in this type of probabilistic information is of a lower priority than the direct information 
contained in a statement G* is A.  Thus, here there is a priority ordering with respect to our 

information and in the face of conflict we want to give preference to the direct information, G* is 

A. 

 The use of a probabilistic representation can also occur in the case in which the source is 

providing information directly about the attribute value for the object of interest.  Consider the 

situation where the source has some uncertainty with regard to the actual value of the variable G*.  

Here, he uses the probability framework to express his perception of the uncertainty.  He is saying 
that my feeling about the uncertainty associated with the value of G* is similar to that of a random 

experiment in which P(xi) is the probability that G* = xi.  Again, in this situation, the information 

provided by the source is also less direct that that provided by the observation that  G* is A. 

 The overall point we want to make here is that often the information provided using a 

probabilistic representation has a lesser priority than that provided using the fuzzy representation.  

This is not to say that fuzzy sets are better then probability but only that the type of information 
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represented by a probability distribution is less directly relevant 

 This distinction in the priority of the two different kinds of information allows us to 

provide a reformulation of the aggregation of these two kinds of information to allow for an 

intelligent adjudication of conflicts.  As a first step in this process, we shall turn to the issue of 

measuring the conflict or conversely the consistency between a probability distribution and a 

possibility distribution. 

 Let Π : X →  [0, 1] be a possibility distribution over the X, thus Π(xi) indicates the 

possibility of xi.  Here, we shall assume this is normal, there exists some x* such that Π(x*) = 1.  

Let P: X → [0, 1] be a probability distribution over X.  P(xi) indicates the probability of xi.  The 

probability distribution has the added requirement that ΣiP(xi) = 1.  Let p* = Maxi[P(xi)] it is the 

maximal probability associated with P.  We can observe that 1n ≤ p* ≤ 1, where n is the cardinality 

of X.  It is well-known that the negation of the Shannon entropy, ΣiP(xi) ln[P(xi)], provides a 

measure of information content of a probability distribution.  What is worth pointing out is the 

Maxi(P(xi)) provides an alternative measure of this information content [31, 32].  While Shannon 

measure has some properties that make it preferred, especially when we consider multiple 

distributions, in the case when we are focusing on one probability distribution, Maxi(P(xi)) 

provides a simple and acceptable measure of the information content of a probability distribution. 

 We now introduce a measure called the consistency of Π and P 

   Consist(Π, P) = Maxi[Π(xi) ∧ P(xi)] where P(xi) = P(xi)
p*

 

We observe that if P is such that if P(xi) = 1n for all xi then p* = 1n and P(xi) = 1 for all xi.  In this 

case both Π(x*) = 1 and P(x*) = 1 and hence Consist(Π, P) = 1.  Thus, the situation when P has 

maximal uncertainty it is consistent with any possibility  distribution.  On the other hand we see 

that if P(x1) = 1 and Π(x1) = 0 then Consist(Π, P) = 0 they are in complete conflict.  In the case 

where X = {x1, x2, x3} and Π(x1) = 1, Π(x2) = 0.1 and Π(x3) = 0 while P(x1) = 0, P(x2) = 0.1 

and P(x3) = 0.9 we get  P(x1) = 0, P(x2) = 0.11 and P(x3) = 1 and hence Consist(Π, P) = 0.1 

 We now consider the modification of the procedure for aggregating possibility and 

probability distributions which uses this measure of consistency to aid in the adjudication of 

conflicting information. 
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 In the preceding, we defined the aggregation of V is A and the probability distribution P as 
inducing a probability distribution where P(x/A, P) = A(x) P(x)

A(xi) P(xi)�
i = 1

n . 

 We now provide a modification of this to account for conflicts between the input 

distributions.  As we shall see, this is will give a priority to the information V is A. 

 Letting α = Consist(P, A) we define 

   P(x/A, P) = 
A(x)[α P(x) + α 1n]

A(xj)[α P(xj) + α 1n�
j = 1

n  

 Let us see how this works.  If the two sources are consistent., α = 1, then 
P(x/A, P) = A(x)P(x)

A(xj)P(xj)�
j = 1

n   and we get  our original formulation.  If the two pieces of 

information are completely conflicting, α = 0 we get P(x/A, P) = 
A(x) 1n

�
j = 1

n
A(αj)1n

 = A(x) 

�
j = 1

n
A(αj)

.  Here 

we completely discount the information contained in the probability distribution P and simply 

obtain P(x/A, P) as a normalization of A. 

 Here, we shall refer to F(α, Pj) = α P(xj) + α 1n as the probability transform and refer to 

λ(xj) = F(α, P(xj)) as the transformed probabilities.  We see that in the face of conflict the 

transformed probabilities move toward 1n 

 We further observe that if A(xj) = 0, then P(x/A, P) = 0. 

Example: Assume X = {x1, x2, x3}, A = { 1
x1

, 0.1
x2

, 0
x3

} and P(x1) = 0, P(x2) = 0.1 and P(x3) = 

0.9,  Here we get  P(x1) = 0, P(x2) = 0.11 and P(x3) = 1 and hence Consist(Π, P) = 0.1. In this 

case the transformed probabilities are:  
 λ(x1) = (0.9) 1

3
 = 0.3 

 λ(x2) = (0.1)(0.1) + (0.9) 1
3

  = 0.31 

 λ(x3) = (0.1)(0.9) + (0.9) 1
3

  = 0.39 

In this case �
i = 1

3
A(xi) λ(xi)= 0.3 + 0.031 = 0.331 and hence  

P(x1/A, P) = 0.3
0.331

  = 0.906, P(x2/A, P) = 0.031
0.331

  = 0.094 and P(x3/A, P) =  0
0.331

 = 0 
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 We must consider one other issue here.  We have implicitly assumed that the possibility 

distribution is normal, Maxj(xj) = 1.  If this is not the case some problems can arise.  Since 

Consist(A, P) = Maxj[A(xj) ∧ 
P(xj)

p*
] ≤ Maxj[A(xj)] our maximal possible  consistency goes 

down.  Here the problems of reduced consistency may be an issue related to the internal conflict 

of the possibility distribution rather then its incompatibility with probability distribution. 

 It may be interesting to consider a slight modification in the case where we have 

Maxj[A(xj)] =  a* < 1.  Here, instead of the end result being a probabilistic distribution we end up 

with a Dempster-Shafer belief structure m. This belief structure has n + 1 focal elements Bj = {xj} 

for j = 1 to n and Bn + 1 = X.  Furthermore for j = 1 to n we have m(Bj) = a* P(xj/A, P) where the 

P(xj/A, P) are calculated as in the preceding,   For Bn + 1 = X we have m(X) = 1 - a*.  We shall 

not pursue this but leave it as a suggestion. 

 

9. Alternative Measures of Certainty 

 Here we consider a more technical issue that may not be of interest to all readers.  We 

want to look a little more deeply at the issue of deciding whether some subset B of X contains the 

value V given that we know that V is A which is the basis our of definition of the measure 

Cert[V is B / V is A].  Here, we shall, unless otherwise stated, assume A is normal.  

 Our definition for the measure for Cert[V is B / V is A] = Minx[Ã(x) ∨ B(x)] is an 

extremely pessimistic measure.  As we see in the crisp case as long as there is one element not in 

B that is possible, in A, it scores a value of zero. We see that if A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

then with B = {1} or B = {1, 2, ..., 9} we get the same degree of certainty, zero.  Here, there exists 

no consideration about the cardinalities of how many elements in A are not in B, except that there 

exists one  

 We observe that our definition of certainty is the degree of truth of the proposition 

"All elements not in B are not possible given A." 

which we expressed as Minx[Ã(x) ∨ B(x)].  In the case where B is crisp this becomes  

Cert[V is B / V is A] = Minx ∈ B[Ã(x)] 

 Prade and Yager [33] suggested a softening of the measure of certainty with the concept of 
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expectedness.  In [33] they introduced the idea of expectedness of V is B given V is A, denoted 

Exp[B/A] which they defined as a degree of truth of the proposition 

"Most of the elements not in B are not possible given A."   

In the case where B is crisp we can express this as 

   Exp[V is B / V is A] = Mostx ∈ B[Ã(x)] 

 We note that the difference between the two concepts, certainty and expectedness, is the 

respective uses of the terms all and most.  We observe that these two terms are examples of what 

Zadeh called linguistic quantifiers [34].  Here, we shall suggest a parameterized formulation 

which leads to a generalization of these types of measures.  Let Q indicate a general member of 

the class of regular monotonic linguistic quantifiers [35].  Using this we introduce the idea of 

what we shall denote as Q–Cert[[V is B / V is A] or more succinctly Q–Cert[B/A].  Specifically 

we define Q–Cert[B / A] as the truth of the statement 

Q of the elements not in B are not possible given A. 

 First, we note that as suggested by Zadeh linguistic quantifier Q can be expressed as a 

fuzzy subset Q [0, 1] → [0, 1] where Q(r) indicates the degree to which the proportion r satisfies 

the concept Q.  The fact that Q is a regular monotonic linguistic quantifier requires that Q satisfy 

the additional three conditions: Q(0) = 0,  Q(1) = 1 and Q(x) ≥ Q(y) if x ≥y 

 We note some special cases of Q.  The first is Q* where Q*(1) = 1 and Q*(x) = 0 for all 

x ≠ 1.  This corresponds to the linguistic quantifier all.  The second special case is Q* where  

Q*(0) = 0 and Q*(x) = 1 for all x ≠ 0.  This corresponds to the quantifier any.  Another special 

case is QA where QA(x) = x.  It is suggested that this models the linguistic quantifier some.  

Furthermore it is suggested that QA corresponds to the quantifier that implicit when no quantifier 

is explicitly expressed, it is a kind of default quantifier. 

 We shall formally define the truth of the proposition Q of the element not in B are not 

possible given A, Q-Cert[V is B / V is A], using these importance weighted OWA operator [36].  

We first recall this operator. 

 Let (cj, dj) be a two tuple in which cj is called the importance and dj is called the argument 

value.  We recall that the OWA aggregation of a collection of these tuples guided by a quantifier 

Q. OWAQ[(c1, d1), (c2, d2)..., ((cn, dn)], is defined as  
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  OWAQ[(c1, d1), (c2, d2)..., ((cn, dn)]  = �
j = 1

n
wj dσ(j) 

where σ(j) is the index of the jth largest of the di and wj = Q(
Tj

T ) - Q(
Tj - 1

T ) where  Tj = �
i = 1

j
cσ(j) 

and T = �
i = 1

n
ci,the sum of all importances. 

 In the following we shall express Q-Cert[V is B / V is A] using this operation.  For 

notational convenience we assume the domain of V, X = {x1,..., xn} and B(xi) = bi and A(xi) = 

ai.  Using this notation  Q-Cert[V is B / V is A] = OWAQ[(bi, ai)] where bi = 1 - bi and ai = 1 - ai 

thus 

  Q-Cert[V is B / V is A] = �
j = 1

n
wj  aσ(j) 

where σ(j) is the index of the jth largest of the ai and wj = Q(
Tj
T

) - Q(
Tj - 1

T
) where Tj = �

i = ?

j
 bσ(j) 

and T = �
k = ?

n
bk. 

 Let us consider the environment when B is crisp.  Here bi = 1 if xi ∈ B and bi = 0 if xi 

∉ B.  Thus bi= 0 if xi ∈ B and bi = 1 if xi ∉ B.  In this situation, we also observe if bσ(j) ∈ B then 

bσ(j) = 0 and since Tj = �
i = 1

j
bσ(j) then in this case, bσ(j) ∈ B, Tj = Tj - 1 and hence wj = 0.  

Thus we see that all terms that are in B have OWA weights equal to zero.  Furthermore, for those 

elements not in B we have bσ(j) = 1 and Tj is the number of elements up to including the jth 

largest ai that are not  in B.  Effectively for those xσ(j) ∉ B we have Tj = 1 + Tj - 1 and for those 

xσ(j) ∈ B, we have Tj = Tj - 1 

 Thus in this case where B is crisp situation we can just consider those elements not lying 
in B.  We shall let n = |B| and let σ

B
(j) be the index of the element having the  jth largest value for 

ai of those lying in B.  Then, in this case, B is crisp, we have Q-Cert[B/A] = �
j = 1

n
wj aσ

B
(j) 

where  wj = Q( j
|B|

) - Q(j - 1
|B|

). 

 Let us consider the resulting formulations for some different examples of Q.  If Q is Q* 

then wn = 1 and wj = 0  for all other j and Q*-Cert[B / A] = Minxi ∉ B[A(xi)].  This was our 

original definition of Cert[B / A].  If we select Q = Q*, then we get Q*Cert[B / A] = Maxxi 

∉ B[A(xi)].  This is what Dubois and Prade called the un-guaranteed necessity.  Another special 
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case is where Q(x) = x.  In this case we have wj = 1
n

 and Q-Cert[V is B / V is A] = �
j ∉ B

1
n

 A(xj), it 

is the average of A(xj) for those xj not in B. 

 In the following, we shall look a useful family of  Q-Cert[V is B / V is A] based on a class  
of quantifiers parameterized by a single scalar value λ  Consider the function Qλ shown in figure 

9. 

 

1

1

Q(y)

λ

 
Figure 9.  Quantifiers parameterized by β 

 We shall denote λ as the strength of necessity.  We easily see that when λ = 1 we get the 
strongest measure Qλ-Cert[B / A] = Minxi ∉ B[A(xi)].  When λ = 0 then we get  Qλ-Cert[B / A]  

= 1
n �

j ∉ B
 A(xj).  Generally we observe at as λ moves from 0 to 1, the value of Qλ-Cert[B / A]  

decreases.  If we impose the additional assumption that A is also crisp we add in developing a 

deeper intuitive understanding of the class of formulations for uncertainty we have introduced.  In 

the case when  λ = 1 to be certain of the truth of statement V is B we require if an outcome is 

possible, in A, it is also in B.  In the case where  λ = 0  we have 
   Qλ-Cert[B / A]  = 1

n �
j ∉ B

 A(xj) = 1 - 1
n �

j ∉ B
A(xj).   

Here we take average possibility of the elements not in B and subtract that from one. 

 In this section we have described a family of definitions for the idea of the Certainty of V 

is  B given V is A based on the parameter Q which we denoted Q-Cert[B / A]  By appropriately 

choosing the quantifier Q we can model the formulation  we want to use for our concept of 

certainty. One important way in which these definitions for certainty differ is with respect to their 

strictness.  Recalling that Q–Cert[B / A] is defined as the truth of the statement "Q of the element 

not in B are not possible given A" we that the the larger Q the stricter.  In order to more formally 

capture this idea of strictness we can associate with any quantifier Q a value called its attitudinal 
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character defined as  

   A-C(Q) = Q(y) dy
0

1

 

It can be shown that A-C(Q) ∈ [0, 1].  Also we can show that for Q = Q* we get A-C(Q*) = 0, for 

Q = Q* we get A-C(Q*) = 1 and for Q(x) = x we get A-C(Q) = 0.5.  Thus the smaller the value of 

A-C the stricter our concept of certainty. 
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